Electroassisted cofactor regeneration with Co-immobilized FDH-GlyDH on mesoporous silica for enhanced CO2 conversion

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Sara García , Clarissa Cocuzza , Lorena Wilson , Marco Piumetti , Carminna Ottone
{"title":"Electroassisted cofactor regeneration with Co-immobilized FDH-GlyDH on mesoporous silica for enhanced CO2 conversion","authors":"Sara García ,&nbsp;Clarissa Cocuzza ,&nbsp;Lorena Wilson ,&nbsp;Marco Piumetti ,&nbsp;Carminna Ottone","doi":"10.1016/j.micromeso.2025.113706","DOIUrl":null,"url":null,"abstract":"<div><div>The coupled formate dehydrogenase (FDH) and glycerol dehydrogenase (GlyDH) system enables the simultaneous production of formate and 1,3-dihydroxyacetone (DHA) from CO<sub>2</sub> and glycerol, with internal NAD(H) cofactor recycling, mimicking metabolic pathways. However, mismatched reaction rates between FDH and GlyDH limit overall efficiency. In this study, we investigated the individual and co-immobilization of FDH and GlyDH on mesoporous silica and evaluated the addition of electrochemical NADH regeneration to improve cofactor balance. Biocatalysts were characterized in terms of immobilization efficiency, activity retention, and stability across temperature and pH ranges. We demonstrate that the optimal FDH-to-GlyDH ratio depends on whether electrochemical regeneration is applied: without it, a lower FDH/GlyDH ratio favors formate production due to GlyDH's faster kinetics; with it, a higher ratio enhances early-stage formate synthesis by alleviating NADH limitations. The system achieved a maximum DHA concentration of 17 mM (FDH/GlyDH = 1:8, no electrochemical regeneration) and a maximum formate concentration of 2.75 mM (FDH/GlyDH = 2.3:1, with electrochemical regeneration). These results demonstrate that combining enzyme immobilization with electrochemical cofactor regeneration can significantly enhance CO<sub>2</sub> bioconversion, offering a promising strategy not only for carbon capture and valorization but also for optimizing other NAD(H)-dependent multienzymatic systems.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"396 ","pages":"Article 113706"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181125002203","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The coupled formate dehydrogenase (FDH) and glycerol dehydrogenase (GlyDH) system enables the simultaneous production of formate and 1,3-dihydroxyacetone (DHA) from CO2 and glycerol, with internal NAD(H) cofactor recycling, mimicking metabolic pathways. However, mismatched reaction rates between FDH and GlyDH limit overall efficiency. In this study, we investigated the individual and co-immobilization of FDH and GlyDH on mesoporous silica and evaluated the addition of electrochemical NADH regeneration to improve cofactor balance. Biocatalysts were characterized in terms of immobilization efficiency, activity retention, and stability across temperature and pH ranges. We demonstrate that the optimal FDH-to-GlyDH ratio depends on whether electrochemical regeneration is applied: without it, a lower FDH/GlyDH ratio favors formate production due to GlyDH's faster kinetics; with it, a higher ratio enhances early-stage formate synthesis by alleviating NADH limitations. The system achieved a maximum DHA concentration of 17 mM (FDH/GlyDH = 1:8, no electrochemical regeneration) and a maximum formate concentration of 2.75 mM (FDH/GlyDH = 2.3:1, with electrochemical regeneration). These results demonstrate that combining enzyme immobilization with electrochemical cofactor regeneration can significantly enhance CO2 bioconversion, offering a promising strategy not only for carbon capture and valorization but also for optimizing other NAD(H)-dependent multienzymatic systems.
在介孔二氧化硅上共固定化FDH-GlyDH的电辅助辅因子再生增强CO2转化
耦合的甲酸脱氢酶(FDH)和甘油脱氢酶(GlyDH)系统使CO2和甘油同时生产甲酸和1,3-二羟基丙酮(DHA),内部NAD(H)辅助因子循环,模拟代谢途径。然而,FDH和GlyDH之间不匹配的反应速率限制了总体效率。在这项研究中,我们研究了FDH和GlyDH在介孔二氧化硅上的单独和共同固定化,并评估了添加电化学NADH再生来改善辅因子平衡的效果。生物催化剂在不同温度和pH范围内的固定化效率、活性保持和稳定性进行了表征。我们证明,最佳的FDH/GlyDH比例取决于是否应用电化学再生:没有电化学再生,由于GlyDH的更快动力学,较低的FDH/GlyDH比例有利于甲酸生成;有了它,更高的比率通过减轻NADH限制来增强早期甲酸合成。该体系最大DHA浓度为17 mM (FDH/GlyDH = 1:8,无电化学再生),最大甲酸浓度为2.75 mM (FDH/GlyDH = 2.3:1,有电化学再生)。这些结果表明,将酶固定化与电化学辅助因子再生相结合可以显著提高二氧化碳的生物转化,不仅为碳捕获和增值提供了一种有前途的策略,而且还为优化其他依赖NAD(H)的多酶系统提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信