Enhanced machine learning models for accurate breast cancer mammogram classification

Q1 Social Sciences
Kiran Puttegowda , Veeraprathap V , H.S. Ranjan Kumar , K.V. Sudheesh , K. Prabhavathi , Ravi Vinayakumar , Kayalvily Tabianan
{"title":"Enhanced machine learning models for accurate breast cancer mammogram classification","authors":"Kiran Puttegowda ,&nbsp;Veeraprathap V ,&nbsp;H.S. Ranjan Kumar ,&nbsp;K.V. Sudheesh ,&nbsp;K. Prabhavathi ,&nbsp;Ravi Vinayakumar ,&nbsp;Kayalvily Tabianan","doi":"10.1016/j.glt.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>Breast cancer has now become the leading cancer type in Indian urban regions surpassing cervical cancer. The imperfect nature of current diagnostic techniques calls for more dependable assessment methods because new automated diagnostic systems do not totally eliminate imperfections. The research of Indian breast cancer datasets remains lower than international platforms owing to distinctive features of breast density, texture, lesion size and composition between these populations. The research develops automated breast cancer detection algorithms for Indian breast types that incorporate metadata to enhance system accuracy in medical diagnosis. We created machine learning algorithms for mammography imaging as part of a development process optimized for Indian breast cancer features. Our top-performing individual model achieved an AUC of 0.95 per image. When integrating four models, the AUC increased to 0.98, with independent test set results from the INbreast database showing 86.7 % sensitivity and 96.1 % specificity. These findings highlight deep learning's potential to enhance mammographic assessment by improving diagnostic accuracy, reducing false errors, and optimizing clinical practice in breast cancer detection.</div></div>","PeriodicalId":33615,"journal":{"name":"Global Transitions","volume":"7 ","pages":"Pages 276-295"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589791825000192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer has now become the leading cancer type in Indian urban regions surpassing cervical cancer. The imperfect nature of current diagnostic techniques calls for more dependable assessment methods because new automated diagnostic systems do not totally eliminate imperfections. The research of Indian breast cancer datasets remains lower than international platforms owing to distinctive features of breast density, texture, lesion size and composition between these populations. The research develops automated breast cancer detection algorithms for Indian breast types that incorporate metadata to enhance system accuracy in medical diagnosis. We created machine learning algorithms for mammography imaging as part of a development process optimized for Indian breast cancer features. Our top-performing individual model achieved an AUC of 0.95 per image. When integrating four models, the AUC increased to 0.98, with independent test set results from the INbreast database showing 86.7 % sensitivity and 96.1 % specificity. These findings highlight deep learning's potential to enhance mammographic assessment by improving diagnostic accuracy, reducing false errors, and optimizing clinical practice in breast cancer detection.
增强的机器学习模型用于准确的乳腺癌乳房x光片分类
乳腺癌现在已经成为印度城市地区超过宫颈癌的主要癌症类型。当前诊断技术的不完善本质要求更可靠的评估方法,因为新的自动化诊断系统并不能完全消除缺陷。由于印度乳腺癌人群在乳腺密度、质地、病变大小和组成等方面的特点不同,印度乳腺癌数据集的研究仍低于国际平台。该研究开发了针对印度乳房类型的自动乳腺癌检测算法,该算法包含元数据,以提高医疗诊断的系统准确性。我们为乳房x光成像创建了机器学习算法,作为针对印度乳腺癌特征进行优化的开发过程的一部分。我们表现最好的单个模型实现了每张图像0.95的AUC。当整合四个模型时,AUC增加到0.98,来自INbreast数据库的独立测试集结果显示敏感性为86.7%,特异性为96.1%。这些发现强调了深度学习通过提高诊断准确性、减少虚假错误和优化乳腺癌检测的临床实践来增强乳房x光检查评估的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Transitions
Global Transitions Social Sciences-Development
CiteScore
18.90
自引率
0.00%
发文量
1
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信