Synergistic optimization of titanium dioxide-assisted photoelectrolysis for solar-driven hydrogen-rich gas production

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Diptanu Dey, Raj Chakraborty, Punam Das, Diptanu Das
{"title":"Synergistic optimization of titanium dioxide-assisted photoelectrolysis for solar-driven hydrogen-rich gas production","authors":"Diptanu Dey,&nbsp;Raj Chakraborty,&nbsp;Punam Das,&nbsp;Diptanu Das","doi":"10.1016/j.ijhydene.2025.05.370","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to renewable energy demands innovative, scalable methods for sustainable hydrogen production. This study investigates the synergistic effects of Titanium Dioxide (TiO<sub>2</sub>), Potassium Hydroxide (KOH), and Carbon Nanoparticles (CNPs) in optimizing solar-driven photoelectrolysis for Hydrogen-Rich Gas (HHO) generation. Under natural sunlight (610–673 W/m<sup>2</sup>), an optimal combination of 0.45 M TiO<sub>2</sub>, 0.27 M KOH, and 0.011 mg/L CNPs yielded a peak HHO production rate of 310.73 ± 17.26 mL/min. Polynomial regression modelling revealed non-linear saturation effects and guided system optimization. Comprehensive material and surface characterizations (XRD, SEM, TEM, XPS) confirmed structural integrity and favourable TiO<sub>2</sub>–CNP interactions. Optical and electrochemical analyses (UV–Vis DRS, PL, TRPL, EIS, photocurrent) indicated enhanced light absorption and interfacial charge transfer. Photothermal monitoring, including infrared thermal imaging, confirmed a localized temperature rise of approximately 8.5 °C in the TiO<sub>2</sub>–CNP system, contributing to enhanced charge kinetics and overall system efficiency. Repeated cycling trials demonstrated &lt;3.2 % variation, confirming operational stability. Compared to existing systems, the proposed configuration achieves higher HHO output using low-cost, noble-metal-free components under ambient solar conditions. This work advances the practical application of TiO<sub>2</sub>-assisted photoelectrolysis and offers a viable route toward affordable, scalable green hydrogen generation.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"140 ","pages":"Pages 464-472"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925026795","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to renewable energy demands innovative, scalable methods for sustainable hydrogen production. This study investigates the synergistic effects of Titanium Dioxide (TiO2), Potassium Hydroxide (KOH), and Carbon Nanoparticles (CNPs) in optimizing solar-driven photoelectrolysis for Hydrogen-Rich Gas (HHO) generation. Under natural sunlight (610–673 W/m2), an optimal combination of 0.45 M TiO2, 0.27 M KOH, and 0.011 mg/L CNPs yielded a peak HHO production rate of 310.73 ± 17.26 mL/min. Polynomial regression modelling revealed non-linear saturation effects and guided system optimization. Comprehensive material and surface characterizations (XRD, SEM, TEM, XPS) confirmed structural integrity and favourable TiO2–CNP interactions. Optical and electrochemical analyses (UV–Vis DRS, PL, TRPL, EIS, photocurrent) indicated enhanced light absorption and interfacial charge transfer. Photothermal monitoring, including infrared thermal imaging, confirmed a localized temperature rise of approximately 8.5 °C in the TiO2–CNP system, contributing to enhanced charge kinetics and overall system efficiency. Repeated cycling trials demonstrated <3.2 % variation, confirming operational stability. Compared to existing systems, the proposed configuration achieves higher HHO output using low-cost, noble-metal-free components under ambient solar conditions. This work advances the practical application of TiO2-assisted photoelectrolysis and offers a viable route toward affordable, scalable green hydrogen generation.
二氧化钛辅助光电解在太阳能驱动富氢气生产中的协同优化
向可再生能源的过渡需要创新的、可扩展的可持续制氢方法。本研究探讨了二氧化钛(TiO2)、氢氧化钾(KOH)和碳纳米颗粒(CNPs)在优化太阳能驱动的光解富氢气体(HHO)生成中的协同效应。在自然光照(610-673 W/m2)条件下,TiO2浓度为0.45 M、KOH浓度为0.27 M、CNPs浓度为0.011 mg/L时,HHO的产率为310.73±17.26 mL/min。多项式回归模型揭示了非线性饱和效应,并指导系统优化。综合材料和表面表征(XRD, SEM, TEM, XPS)证实了结构的完整性和良好的TiO2-CNP相互作用。光学和电化学分析(UV-Vis DRS, PL, TRPL, EIS,光电流)表明光吸收和界面电荷转移增强。包括红外热成像在内的光热监测证实,TiO2-CNP体系中局部温度上升了约8.5°C,有助于增强电荷动力学和整体系统效率。反复循环试验显示有3.2%的变化,证实了操作的稳定性。与现有系统相比,所提出的配置在环境太阳能条件下使用低成本,无贵金属组件实现更高的HHO输出。这项工作推进了二氧化钛辅助光电解的实际应用,并为经济实惠、可扩展的绿色制氢提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信