Influence of additional liquid layer on growth dynamics of TFA-MOD YBa₂Cu₃O7-δ thin films

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Yixue Fu , Xinghang Zhou , Jiaqi Tao , Fuhao Liu , Zhiyong Liu , Difan Zhou , Chuanbing Cai
{"title":"Influence of additional liquid layer on growth dynamics of TFA-MOD YBa₂Cu₃O7-δ thin films","authors":"Yixue Fu ,&nbsp;Xinghang Zhou ,&nbsp;Jiaqi Tao ,&nbsp;Fuhao Liu ,&nbsp;Zhiyong Liu ,&nbsp;Difan Zhou ,&nbsp;Chuanbing Cai","doi":"10.1016/j.ceramint.2025.02.149","DOIUrl":null,"url":null,"abstract":"<div><div>Transient liquid phase has recently been proved to assist the ultra-fast nucleation of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> (YBCO) thin films/tapes during the chemical solution deposition process making it a promising technique for processing high temperature superconducting tapes. In this work, we attempted to introduce the liquid rich environment into the TFA-YBCO process by coating an additional Ba-Cu-O (BCO) layer in advance, and systematically investigated its influence on nucleation dynamics by adjusting key parameters including temperature and oxygen partial pressure. The results show that due to intermediate phase coarsening, the presence of a nonuniform distribution of liquid-phase leads to higher local supersaturation, thereby promoting mixed <em>a</em>-axis and <em>c</em>-axis growth. Under rapid heating conditions, a large number of liquid phases form, reducing the relative supersaturation and minimizing particle coarsening. This reduces the growth time from 90 min to 40 min and results in a dense film with highly oriented <em>c</em>-axis orientation. In addition, we established a liquid-phase diffusion model based on the evolution of the intermediate phase, revealing the effects of conventional and rapid heating on liquid-phase diffusion.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 15","pages":"Pages 19795-19803"},"PeriodicalIF":5.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225008156","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Transient liquid phase has recently been proved to assist the ultra-fast nucleation of YBa2Cu3O7-δ (YBCO) thin films/tapes during the chemical solution deposition process making it a promising technique for processing high temperature superconducting tapes. In this work, we attempted to introduce the liquid rich environment into the TFA-YBCO process by coating an additional Ba-Cu-O (BCO) layer in advance, and systematically investigated its influence on nucleation dynamics by adjusting key parameters including temperature and oxygen partial pressure. The results show that due to intermediate phase coarsening, the presence of a nonuniform distribution of liquid-phase leads to higher local supersaturation, thereby promoting mixed a-axis and c-axis growth. Under rapid heating conditions, a large number of liquid phases form, reducing the relative supersaturation and minimizing particle coarsening. This reduces the growth time from 90 min to 40 min and results in a dense film with highly oriented c-axis orientation. In addition, we established a liquid-phase diffusion model based on the evolution of the intermediate phase, revealing the effects of conventional and rapid heating on liquid-phase diffusion.
附加液层对TFA-MOD YBa₂Cu₃O7-δ薄膜生长动力学的影响
在化学溶液沉积过程中,瞬态液相已被证明有助于YBa2Cu3O7-δ (YBCO)薄膜/带的超快成核,使其成为一种有前途的高温超导带加工技术。本文通过在TFA-YBCO过程中添加Ba-Cu-O (BCO)层,尝试将富液环境引入TFA-YBCO过程中,并通过调节温度和氧分压等关键参数,系统地研究了富液环境对成核动力学的影响。结果表明:由于中间相粗化,液相分布不均匀导致局部过饱和增大,从而促进了a轴和c轴的混合生长;在快速加热条件下,形成大量液相,降低了相对过饱和度,最大限度地减少了颗粒的粗化。这将生长时间从90分钟减少到40分钟,并产生具有高度定向的c轴取向的致密膜。此外,我们建立了基于中间相演化的液相扩散模型,揭示了常规加热和快速加热对液相扩散的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信