{"title":"Flexible and High-Performance Solution-Processable Single-Detector Organic Spectrometer","authors":"Yu Zhu, Zhe Zhang, Hao Qin, Yanqing Yang, Jing Zhang, Zhaoyang Yao, Guanghui Li, Yongsheng Chen","doi":"10.1002/adma.202502608","DOIUrl":null,"url":null,"abstract":"Spectrometers are indispensable tools for civil and military-related optoelectronic applications. To meet the requirements of the revolutionary data/AI-driven era, next-generation spectrometers must not only be flexible with minimal sizes but exhibit high accuracy and resolution. In this study, a compact, high-performance, and flexible organic spectrometer is reported, fabricated using solution processing, which employs an optical cascade architecture by integrating organic electrochromic devices and photodetectors. This organic spectrometer can not only achieve a resolution of 0.56 nm, an accuracy of 0.14 nm, and a broad detection range from 400 to 1000 nm but also realize a vital absolute spectral irradiance measurement ranging from 10<sup>−8</sup> to 10<sup>−4</sup> W cm<sup>−2</sup> nm<sup>−1</sup>. Additionally, its intrinsic flexibility and highly replaceable feasibility of bandgap-tunable organic materials enable their high applicability with excellent portability and adaptability in the upcoming data/AI-driven era or scenarios.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"5 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202502608","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spectrometers are indispensable tools for civil and military-related optoelectronic applications. To meet the requirements of the revolutionary data/AI-driven era, next-generation spectrometers must not only be flexible with minimal sizes but exhibit high accuracy and resolution. In this study, a compact, high-performance, and flexible organic spectrometer is reported, fabricated using solution processing, which employs an optical cascade architecture by integrating organic electrochromic devices and photodetectors. This organic spectrometer can not only achieve a resolution of 0.56 nm, an accuracy of 0.14 nm, and a broad detection range from 400 to 1000 nm but also realize a vital absolute spectral irradiance measurement ranging from 10−8 to 10−4 W cm−2 nm−1. Additionally, its intrinsic flexibility and highly replaceable feasibility of bandgap-tunable organic materials enable their high applicability with excellent portability and adaptability in the upcoming data/AI-driven era or scenarios.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.