Soren F. Sandeno, Samantha M. Harvey, Vijay N. Lin, Brandi M. Cossairt
{"title":"Narrow Blue Emission from Cadmium Phosphide Clusters Enhanced through Phosphinate Ligation","authors":"Soren F. Sandeno, Samantha M. Harvey, Vijay N. Lin, Brandi M. Cossairt","doi":"10.1021/acs.nanolett.5c01891","DOIUrl":null,"url":null,"abstract":"The atomic precision of magic-sized clusters offers a route toward narrow emission by eliminating heterogeneous broadening. Herein, we report ultranarrow 467 nm blue emission from cadmium phosphide clusters with a 96 meV line width and as high as 26% photoluminescence quantum yield (PLQY) enabled by tightly bound, bidentate phosphinate ligands. They are obtained through postsynthetic ligand exchange from oleate-capped clusters. The phosphinate maintains the bidentate coordination motif, which does not disturb the metastability of the material but does induce a change in the surface dipole, causing a bathochromic shift in the emission from 457 to 467 nm, which is an optimal wavelength for blue emission. We find that the structure of the ligand tail can heavily influence PLQY and other aspects of the charge carrier dynamics. The ligand exchange protocol can be applied to the related cadmium arsenide clusters, resulting in a narrow 550 nm green emission with a 9% PLQY.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"5 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01891","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The atomic precision of magic-sized clusters offers a route toward narrow emission by eliminating heterogeneous broadening. Herein, we report ultranarrow 467 nm blue emission from cadmium phosphide clusters with a 96 meV line width and as high as 26% photoluminescence quantum yield (PLQY) enabled by tightly bound, bidentate phosphinate ligands. They are obtained through postsynthetic ligand exchange from oleate-capped clusters. The phosphinate maintains the bidentate coordination motif, which does not disturb the metastability of the material but does induce a change in the surface dipole, causing a bathochromic shift in the emission from 457 to 467 nm, which is an optimal wavelength for blue emission. We find that the structure of the ligand tail can heavily influence PLQY and other aspects of the charge carrier dynamics. The ligand exchange protocol can be applied to the related cadmium arsenide clusters, resulting in a narrow 550 nm green emission with a 9% PLQY.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.