Electrodeposited ZnO/Zn(OH)2 Nanosheets as a Functional Interface for Dendrite-Free Lithium Metal Anodes

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-05-30 DOI:10.1002/smll.202503607
Da-Eun Hyun, Jong Chan Choi, Yoon Ho Kim, Yejin Ra, Jae Sol Sim, Jung-Kul Lee, Yun Chan Kang
{"title":"Electrodeposited ZnO/Zn(OH)2 Nanosheets as a Functional Interface for Dendrite-Free Lithium Metal Anodes","authors":"Da-Eun Hyun, Jong Chan Choi, Yoon Ho Kim, Yejin Ra, Jae Sol Sim, Jung-Kul Lee, Yun Chan Kang","doi":"10.1002/smll.202503607","DOIUrl":null,"url":null,"abstract":"Modifying the current collector is a promising strategy to enable Li metal anodes with minimal Li consumption. Herein, a scalable electrodeposition method is introduced to construct 3D ZnO/Zn(OH)<sub>2</sub> nanosheets on Cu foil (ZOH NSs–Cu foil). Cu(OH)<sub>2</sub> nanowires are first formed via anodization, followed by electroconversion of Cu<sup>2+</sup> and Zn<sup>2+</sup> ions. DFT calculations reveal that the ZOH NSs–Cu foil exhibits high Li adsorption energy, imparting strong lithiophilicity and lowering the Li nucleation overpotential. The 3D nanosheet structure provides a large electrochemically active surface, reducing the effective current density. Furthermore, ZOH NSs–Cu foil exhibits low charge transfer resistance and promotes a Li<sub>2</sub>O/LiF-rich solid electrolyte interphase (SEI) layer, further reducing interfacial resistance. SEM analysis and simulations confirm uniform Li deposition on ZOH NSs–Cu foil. In asymmetric cells (1 mAh cm<sup>−2</sup> at 1 mA cm<sup>−2</sup>), ZOH NSs–Cu foil supports stable cycling for over 400 cycles. Furthermore, a full cell coupling a LiFePO<sub>4</sub> (LFP) cathode with a Li@ZOH NSs–Cu foil anode retains high capacity with ≈100% Coulombic efficiency over 350 cycles at 1 C, even at an N/P ratio of ≈1.9. This binder-free, scalable approach offers precise Li deposition control and excellent electrochemical performance, advancing the practical application of Li metal anodes.","PeriodicalId":228,"journal":{"name":"Small","volume":"70 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202503607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Modifying the current collector is a promising strategy to enable Li metal anodes with minimal Li consumption. Herein, a scalable electrodeposition method is introduced to construct 3D ZnO/Zn(OH)2 nanosheets on Cu foil (ZOH NSs–Cu foil). Cu(OH)2 nanowires are first formed via anodization, followed by electroconversion of Cu2+ and Zn2+ ions. DFT calculations reveal that the ZOH NSs–Cu foil exhibits high Li adsorption energy, imparting strong lithiophilicity and lowering the Li nucleation overpotential. The 3D nanosheet structure provides a large electrochemically active surface, reducing the effective current density. Furthermore, ZOH NSs–Cu foil exhibits low charge transfer resistance and promotes a Li2O/LiF-rich solid electrolyte interphase (SEI) layer, further reducing interfacial resistance. SEM analysis and simulations confirm uniform Li deposition on ZOH NSs–Cu foil. In asymmetric cells (1 mAh cm−2 at 1 mA cm−2), ZOH NSs–Cu foil supports stable cycling for over 400 cycles. Furthermore, a full cell coupling a LiFePO4 (LFP) cathode with a Li@ZOH NSs–Cu foil anode retains high capacity with ≈100% Coulombic efficiency over 350 cycles at 1 C, even at an N/P ratio of ≈1.9. This binder-free, scalable approach offers precise Li deposition control and excellent electrochemical performance, advancing the practical application of Li metal anodes.

Abstract Image

电沉积ZnO/Zn(OH)2纳米片作为无枝晶锂金属阳极的功能界面
修改电流收集器是一种有前途的策略,使锂金属阳极具有最小的锂消耗。本文介绍了一种可扩展电沉积方法在铜箔上构建三维ZnO/Zn(OH)2纳米片(ZOH NSs-Cu箔)。Cu(OH)2纳米线首先通过阳极氧化形成,然后通过Cu2+和Zn2+离子的电转化形成。DFT计算表明,ZOH NSs-Cu箔具有较高的锂吸附能,具有较强的亲锂性,降低了锂成核过电位。三维纳米片结构提供了一个大的电化学活性表面,降低了有效电流密度。此外,ZOH NSs-Cu箔具有较低的电荷转移电阻,促进了富含Li2O/ lif的固体电解质界面层(SEI)的形成,进一步降低了界面电阻。SEM分析和模拟结果证实了ZOH NSs-Cu箔上Li沉积均匀。在不对称电池(1毫安时cm−2在1毫安时cm−2),ZOH NSs-Cu箔支持稳定循环超过400次循环。此外,耦合LiFePO4 (LFP)阴极和Li@ZOH NSs-Cu箔阳极的全电池在1℃下,即使在N/P比≈1.9时,也能在350次循环中保持≈100%的库仑效率。这种无粘结剂、可扩展的方法提供了精确的锂沉积控制和优异的电化学性能,推进了锂金属阳极的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信