Yanxin Shang, Yongxin Huang, Li Li, Feng Wu, Renjie Chen
{"title":"Electrochemical Energy Storage toward Extreme Conditions: Driving Human Exploration beyond Current Boundaries","authors":"Yanxin Shang, Yongxin Huang, Li Li, Feng Wu, Renjie Chen","doi":"10.1021/acs.chemrev.4c00863","DOIUrl":null,"url":null,"abstract":"Major projects reliant on electric energy support, such as manned spaceflight, ocean exploration, and polar development, will encounter extreme environmental challenges. The most representative scenarios, including deep space, deep sea, deep earth, and polar regions, will be systematically discussed in this review. The interaction of multiple environmental factors under complex working conditions leads to multifaceted failures that significantly compromise the performance of electrochemical energy storage systems (EESSs). Specifically, this review examines EESSs operating under extreme conditions, including extreme temperatures, extreme pressures, electromagnetic radiations and so on. It addresses key challenges and summarizes solutions based on a mechanistic understanding of new electrochemical reactions and strategies to enhance electrochemical performance. Additionally, it provides a comprehensive overview of experimental and simulated technology, from the microscopic physicochemical mechanisms level to whole battery chemistry, and explores potential applications for EESSs in the future. Finally, this review offers prospective analyses of the demand for EESSs in future space exploration, involving missions to the Lunar surface, Mars and asteroids. This review provides both a theoretical and technical foundation for developing high-performance battery materials in extreme environments. It contributes to advancing diverse application scenarios for high-power EESSs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"71 1","pages":""},"PeriodicalIF":55.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00863","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Major projects reliant on electric energy support, such as manned spaceflight, ocean exploration, and polar development, will encounter extreme environmental challenges. The most representative scenarios, including deep space, deep sea, deep earth, and polar regions, will be systematically discussed in this review. The interaction of multiple environmental factors under complex working conditions leads to multifaceted failures that significantly compromise the performance of electrochemical energy storage systems (EESSs). Specifically, this review examines EESSs operating under extreme conditions, including extreme temperatures, extreme pressures, electromagnetic radiations and so on. It addresses key challenges and summarizes solutions based on a mechanistic understanding of new electrochemical reactions and strategies to enhance electrochemical performance. Additionally, it provides a comprehensive overview of experimental and simulated technology, from the microscopic physicochemical mechanisms level to whole battery chemistry, and explores potential applications for EESSs in the future. Finally, this review offers prospective analyses of the demand for EESSs in future space exploration, involving missions to the Lunar surface, Mars and asteroids. This review provides both a theoretical and technical foundation for developing high-performance battery materials in extreme environments. It contributes to advancing diverse application scenarios for high-power EESSs.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.