Gravitational-wave Parameter Estimation in Non-Gaussian Noise Using Score-based Likelihood Characterization

Ronan Legin, Maximiliano Isi, Kaze W. K. Wong, Yashar Hezaveh and Laurence Perreault-Levasseur
{"title":"Gravitational-wave Parameter Estimation in Non-Gaussian Noise Using Score-based Likelihood Characterization","authors":"Ronan Legin, Maximiliano Isi, Kaze W. K. Wong, Yashar Hezaveh and Laurence Perreault-Levasseur","doi":"10.3847/2041-8213/add681","DOIUrl":null,"url":null,"abstract":"Gravitational-wave (GW) parameter estimation typically assumes that instrumental noise is Gaussian and stationary. Obvious departures from this idealization are typically handled on a case-by-case basis, e.g., through bespoke procedures to “clean” non-Gaussian noise transients (glitches), as was famously the case for the GW170817 neutron-star binary. Although effective, this data manipulation can bias key astrophysical inferences, such as binary precession, and compound unpredictably when combining multiple observations. Alternative bias-free methods, like joint noise-signal inference, remain too computationally expensive for large-scale execution. Here we take a different approach: rather than explicitly modeling individual non-Gaussianities to then apply the traditional GW likelihood, we seek to learn the true distribution of instrumental noise without presuming Gaussianity and stationarity in the first place. Assuming only noise additivity, we employ score-based diffusion models to learn an empirical noise distribution directly from detector data and then combine it with a deterministic waveform model to provide an unbiased estimate of the likelihood function. We validate the method by performing inference on a subset of GW parameters from 400 mock observations, containing real LIGO noise from either the Livingston or Hanford detectors. We show that the proposed method can recover the true parameters even in the presence of loud glitches, and that the inference is unbiased over a population of signals without applying any cleaning to the data. This work provides a promising avenue for extracting unbiased source properties in future GW observations over the coming decade.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/add681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gravitational-wave (GW) parameter estimation typically assumes that instrumental noise is Gaussian and stationary. Obvious departures from this idealization are typically handled on a case-by-case basis, e.g., through bespoke procedures to “clean” non-Gaussian noise transients (glitches), as was famously the case for the GW170817 neutron-star binary. Although effective, this data manipulation can bias key astrophysical inferences, such as binary precession, and compound unpredictably when combining multiple observations. Alternative bias-free methods, like joint noise-signal inference, remain too computationally expensive for large-scale execution. Here we take a different approach: rather than explicitly modeling individual non-Gaussianities to then apply the traditional GW likelihood, we seek to learn the true distribution of instrumental noise without presuming Gaussianity and stationarity in the first place. Assuming only noise additivity, we employ score-based diffusion models to learn an empirical noise distribution directly from detector data and then combine it with a deterministic waveform model to provide an unbiased estimate of the likelihood function. We validate the method by performing inference on a subset of GW parameters from 400 mock observations, containing real LIGO noise from either the Livingston or Hanford detectors. We show that the proposed method can recover the true parameters even in the presence of loud glitches, and that the inference is unbiased over a population of signals without applying any cleaning to the data. This work provides a promising avenue for extracting unbiased source properties in future GW observations over the coming decade.
基于分数似然特征的非高斯噪声引力波参数估计
引力波(GW)参数估计通常假设仪器噪声是高斯和平稳的。这种理想化的明显偏离通常是在个案的基础上处理的,例如,通过定制的程序来“清除”非高斯噪声瞬态(故障),就像GW170817中子星双星的著名案例一样。虽然有效,但这种数据操作可能会影响关键的天体物理推断,如双进动,并在结合多个观测结果时不可预测地复合。其他无偏差的方法,如联合噪声-信号推理,对于大规模执行来说计算成本仍然太高。在这里,我们采取了一种不同的方法:而不是明确地对单个非高斯性进行建模,然后应用传统的GW似然,我们试图在不首先假设高斯性和平稳性的情况下了解仪器噪声的真实分布。仅假设噪声可加性,我们采用基于分数的扩散模型直接从检测器数据中学习经验噪声分布,然后将其与确定性波形模型相结合,以提供似然函数的无偏估计。我们通过对来自400个模拟观测的GW参数子集进行推理来验证该方法,这些模拟观测包含来自Livingston或Hanford探测器的真实LIGO噪声。我们证明了所提出的方法即使在存在大故障的情况下也能恢复真实参数,并且在不对数据进行任何清洗的情况下,对信号的总体推断是无偏的。这项工作为在未来十年的GW观测中提取无偏源特性提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信