{"title":"Enhancing photocatalytic efficiency through surface modification to manipulate internal electron-hole distribution","authors":"Hong Tu, Bihong Tian, Shunshun Chen, Jingyi Xu, Jianrong Yang, Zhichao Zhao, Shunhong Chen, Jian Wu","doi":"10.1038/s41545-025-00480-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, we synthesized ten g-C<sub>3</sub>N<sub>4</sub>-based covalent organic frameworks (COFs) and identified CN-306 as the most effective catalyst for visible-light-driven hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production. Systematic optimization revealed that increasing ethanol proportions in the reaction medium significantly enhanced H<sub>2</sub>O<sub>2</sub> yield, achieving a remarkable production rate of 5352 μmol g<sup>−1</sup>h<sup>−1</sup> with a surface quantum efficiency of 7.27% at λ = 420 nm. Intriguingly, mechanistic investigations uncovered that excessive generation of singlet oxygen (<sup>1</sup>O<sub>2</sub>) acts as a critical inhibitory factor, impeding H<sub>2</sub>O<sub>2</sub> accumulation. Multimodal characterization techniques combined with density functional theory (DFT) calculations were employed to unravel the origin of CN-306’s superior performance. Theoretical analyses demonstrated that CN-306 exhibits enhanced electron-hole separation efficiency, attributed to its reduced energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), which facilitates photocarrier migration and suppresses detrimental recombination. Furthermore, this work elucidates the structure-function relationships governing site-specific functional group modifications in COFs and their profound influence on photocatalytic activity. These findings provide molecular-level insights into rational catalyst design for optimizing surface structures and advancing solar-driven H<sub>2</sub>O<sub>2</sub> synthesis applications.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"1 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00480-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we synthesized ten g-C3N4-based covalent organic frameworks (COFs) and identified CN-306 as the most effective catalyst for visible-light-driven hydrogen peroxide (H2O2) production. Systematic optimization revealed that increasing ethanol proportions in the reaction medium significantly enhanced H2O2 yield, achieving a remarkable production rate of 5352 μmol g−1h−1 with a surface quantum efficiency of 7.27% at λ = 420 nm. Intriguingly, mechanistic investigations uncovered that excessive generation of singlet oxygen (1O2) acts as a critical inhibitory factor, impeding H2O2 accumulation. Multimodal characterization techniques combined with density functional theory (DFT) calculations were employed to unravel the origin of CN-306’s superior performance. Theoretical analyses demonstrated that CN-306 exhibits enhanced electron-hole separation efficiency, attributed to its reduced energy gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), which facilitates photocarrier migration and suppresses detrimental recombination. Furthermore, this work elucidates the structure-function relationships governing site-specific functional group modifications in COFs and their profound influence on photocatalytic activity. These findings provide molecular-level insights into rational catalyst design for optimizing surface structures and advancing solar-driven H2O2 synthesis applications.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.