Anna M. Dowbaj, Aleksandra Sljukic, Armin Niksic, Cedric Landerer, Julien Delpierre, Haochen Yang, Aparajita Lahree, Ariane C. Kühn, David Beers, Helen M. Byrne, Sarah Seifert, Heather A. Harrington, Marino Zerial, Meritxell Huch
{"title":"Mouse liver assembloids model periportal architecture and biliary fibrosis","authors":"Anna M. Dowbaj, Aleksandra Sljukic, Armin Niksic, Cedric Landerer, Julien Delpierre, Haochen Yang, Aparajita Lahree, Ariane C. Kühn, David Beers, Helen M. Byrne, Sarah Seifert, Heather A. Harrington, Marino Zerial, Meritxell Huch","doi":"10.1038/s41586-025-09183-9","DOIUrl":null,"url":null,"abstract":"<p>Modelling liver disease requires <i>in vitro</i> systems that replicate disease progression<sup>1,2</sup>. Current tissue-derived organoids fail to reproduce the complex cellular composition and tissue architecture observed <i>in vivo</i><sup>3</sup>. Here, we describe a multicellular organoid system composed of adult hepatocytes, cholangiocytes and mesenchymal cells that recapitulates the architecture of the liver periportal region and, when manipulated, models aspects of cholestatic injury and biliary fibrosis. We first generate reproducible hepatocyte organoids with functional bile canaliculi network that retain morphological features of <i>in vivo</i> tissue. By combining these with cholangiocytes and portal fibroblasts, we generate assembloids that mimic the cellular interactions of the periportal region. Assembloids are functional, consistently draining bile from bile canaliculi into the bile duct. Strikingly, manipulating the relative number of portal mesenchymal cells is sufficient to induce a fibrotic-like state, independently of an immune compartment. By generating chimeric assembloids of mutant and wild-type cells, or after gene knockdown, we show proof-of-concept that our system is amenable to investigating gene function and cell-autonomous mechanisms. Taken together, we demonstrate that liver assembloids represent a suitable <i>in vitro</i> system to study bile canaliculi formation, bile drainage, and how different cell types contribute to cholestatic disease and biliary fibrosis, in an all-in-one model.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"26 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09183-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modelling liver disease requires in vitro systems that replicate disease progression1,2. Current tissue-derived organoids fail to reproduce the complex cellular composition and tissue architecture observed in vivo3. Here, we describe a multicellular organoid system composed of adult hepatocytes, cholangiocytes and mesenchymal cells that recapitulates the architecture of the liver periportal region and, when manipulated, models aspects of cholestatic injury and biliary fibrosis. We first generate reproducible hepatocyte organoids with functional bile canaliculi network that retain morphological features of in vivo tissue. By combining these with cholangiocytes and portal fibroblasts, we generate assembloids that mimic the cellular interactions of the periportal region. Assembloids are functional, consistently draining bile from bile canaliculi into the bile duct. Strikingly, manipulating the relative number of portal mesenchymal cells is sufficient to induce a fibrotic-like state, independently of an immune compartment. By generating chimeric assembloids of mutant and wild-type cells, or after gene knockdown, we show proof-of-concept that our system is amenable to investigating gene function and cell-autonomous mechanisms. Taken together, we demonstrate that liver assembloids represent a suitable in vitro system to study bile canaliculi formation, bile drainage, and how different cell types contribute to cholestatic disease and biliary fibrosis, in an all-in-one model.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.