{"title":"The PlMYB73-PlMYB70-PlMYB108 complex regulates PlTPS1 to promote geraniol biosynthesis in Paeonia lactiflora","authors":"Qian Zhao, Yuqing Li, Lina Gu, Yehua Yang, Di He, Jianrang Luo, Yanlong Zhang","doi":"10.1093/hr/uhaf141","DOIUrl":null,"url":null,"abstract":"Geraniol contributes significantly to the floral scent of herbaceous peony (Paeonia lactiflora) and is abundant in fragrant cultivars. However, the regulatory mechanism of geraniol biosynthesis in herbaceous peony remains unclear. In this study, we identified a transcriptional regulatory complex (PlMYB73-PlMYB70-PlMYB108) that cooperatively regulated geraniol biosynthesis in herbaceous peony. The three MYB members were identified through correlation analysis between geraniol content and gene expression profiles in 17 herbaceous peony cultivars. Transient overexpression and gene silencing experiments revealed that PlMYB73, PlMYB108, and PlMYB70 positively regulated PlTPS1 expression and geraniol accumulation. PlMYB108 and PlMYB70 directly upregulate PlTPS1 by binding to the TAACCA and CAACTG motifs, respectively, as demonstrated by yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays. Although PlMYB73 did not directly bind to the PlTPS1 promoter, yeast two-hybrid, bimolecular fluorescence complementation, luciferase complementation imaging, and dual-luciferase assays revealed its interaction with PlMYB70 in the nucleus, resulting in synergistic activation of PlTPS1. PlMYB108 was also found to interact with PlMYB70. The three MYB transcription factors formed the PlMYB73-PlMYB70-PlMYB108 complex. Gene co-overexpression and co-silencing experiments demonstrated that the complex significantly enhanced geraniol biosynthesis. In conclusion, our research provides novel insights into the molecular mechanism by which transcription factors cooperatively regulate geraniol biosynthesis.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"82 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf141","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Geraniol contributes significantly to the floral scent of herbaceous peony (Paeonia lactiflora) and is abundant in fragrant cultivars. However, the regulatory mechanism of geraniol biosynthesis in herbaceous peony remains unclear. In this study, we identified a transcriptional regulatory complex (PlMYB73-PlMYB70-PlMYB108) that cooperatively regulated geraniol biosynthesis in herbaceous peony. The three MYB members were identified through correlation analysis between geraniol content and gene expression profiles in 17 herbaceous peony cultivars. Transient overexpression and gene silencing experiments revealed that PlMYB73, PlMYB108, and PlMYB70 positively regulated PlTPS1 expression and geraniol accumulation. PlMYB108 and PlMYB70 directly upregulate PlTPS1 by binding to the TAACCA and CAACTG motifs, respectively, as demonstrated by yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays. Although PlMYB73 did not directly bind to the PlTPS1 promoter, yeast two-hybrid, bimolecular fluorescence complementation, luciferase complementation imaging, and dual-luciferase assays revealed its interaction with PlMYB70 in the nucleus, resulting in synergistic activation of PlTPS1. PlMYB108 was also found to interact with PlMYB70. The three MYB transcription factors formed the PlMYB73-PlMYB70-PlMYB108 complex. Gene co-overexpression and co-silencing experiments demonstrated that the complex significantly enhanced geraniol biosynthesis. In conclusion, our research provides novel insights into the molecular mechanism by which transcription factors cooperatively regulate geraniol biosynthesis.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.