Visualizing hot carrier dynamics by nonlinear optical spectroscopy at the atomic length scale

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang Luo, Shaoxiang Sheng, Andrea Schirato, Alberto Martin-Jimenez, Giuseppe Della Valle, Giulio Cerullo, Klaus Kern, Manish Garg
{"title":"Visualizing hot carrier dynamics by nonlinear optical spectroscopy at the atomic length scale","authors":"Yang Luo, Shaoxiang Sheng, Andrea Schirato, Alberto Martin-Jimenez, Giuseppe Della Valle, Giulio Cerullo, Klaus Kern, Manish Garg","doi":"10.1038/s41467-025-60384-2","DOIUrl":null,"url":null,"abstract":"<p>Probing and manipulating the spatiotemporal dynamics of hot carriers in nanoscale metals is crucial to a plethora of applications ranging from nonlinear nanophotonics to single-molecule photochemistry. The direct investigation of these highly non-equilibrium carriers requires the experimental capability of high energy-resolution (~ meV) broadband femtosecond spectroscopy. When considering the ultimate limits of atomic-scale structures, this capability has remained out of reach until date. Using a two-color femtosecond pump-probe spectroscopy, we present here the real-time tracking of hot carrier dynamics in a well-defined plasmonic picocavity, formed in the tunnel junction of a scanning tunneling microscope (STM). The excitation of hot carriers in the picocavity enables ultrafast all-optical control over the broadband (~ eV) anti-Stokes electronic resonance Raman scattering (ERRS) and the four-wave mixing (FWM) signals generated at the atomic length scale. By mapping the ERRS and FWM signals from a single graphene nanoribbon (GNR), we demonstrate that both signals are more efficiently generated along the edges of the GNR — a manifestation of atomic-scale nonlinear optical microscopy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"5 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60384-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Probing and manipulating the spatiotemporal dynamics of hot carriers in nanoscale metals is crucial to a plethora of applications ranging from nonlinear nanophotonics to single-molecule photochemistry. The direct investigation of these highly non-equilibrium carriers requires the experimental capability of high energy-resolution (~ meV) broadband femtosecond spectroscopy. When considering the ultimate limits of atomic-scale structures, this capability has remained out of reach until date. Using a two-color femtosecond pump-probe spectroscopy, we present here the real-time tracking of hot carrier dynamics in a well-defined plasmonic picocavity, formed in the tunnel junction of a scanning tunneling microscope (STM). The excitation of hot carriers in the picocavity enables ultrafast all-optical control over the broadband (~ eV) anti-Stokes electronic resonance Raman scattering (ERRS) and the four-wave mixing (FWM) signals generated at the atomic length scale. By mapping the ERRS and FWM signals from a single graphene nanoribbon (GNR), we demonstrate that both signals are more efficiently generated along the edges of the GNR — a manifestation of atomic-scale nonlinear optical microscopy.

Abstract Image

在原子长度尺度上用非线性光谱学可视化热载流子动力学
探测和控制纳米尺度金属中热载流子的时空动力学对于从非线性纳米光子学到单分子光化学的大量应用至关重要。对这些高度非平衡载流子的直接研究需要高能量分辨率(~ meV)宽带飞秒光谱的实验能力。当考虑到原子尺度结构的极限时,这种能力直到今天仍然遥不可及。利用双色飞秒泵浦探测光谱技术,我们在扫描隧道显微镜(STM)的隧道结中形成了一个定义明确的等离子体皮腔,并实时跟踪了热载子动力学。热载流子在皮腔中的激发使得对原子长度尺度上产生的宽带(~ eV)反斯托克斯电子共振拉曼散射(ERRS)和四波混频(FWM)信号的超快全光控制成为可能。通过映射来自单个石墨烯纳米带(GNR)的ERRS和FWM信号,我们证明这两个信号沿着GNR的边缘更有效地产生-这是原子尺度非线性光学显微镜的一种表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信