Oxygen-doped carbon-supported palladium nanoparticles boost the tandem hydrogenation–acetalization–hydrogenolysis of phenols and diphenyl ethers to cyclohexyl ethers
Lang Jiang, Xiang Li, Yiqian Ma, Yiliang Hua, Yicheng Peng, Mengxiang Ma, Chengxiang Shi, Jun Wang, Ji-Jun Zou, Qiang Deng
{"title":"Oxygen-doped carbon-supported palladium nanoparticles boost the tandem hydrogenation–acetalization–hydrogenolysis of phenols and diphenyl ethers to cyclohexyl ethers","authors":"Lang Jiang, Xiang Li, Yiqian Ma, Yiliang Hua, Yicheng Peng, Mengxiang Ma, Chengxiang Shi, Jun Wang, Ji-Jun Zou, Qiang Deng","doi":"10.1038/s41467-025-60268-5","DOIUrl":null,"url":null,"abstract":"<p>The one-pot hydrotreatment of phenols to cyclohexyl ethers is crucial but difficult to achieve for fine chemical synthesis owing to the easy overhydrogenation to cyclohexanols over traditional metal–acid bifunctional catalysts. Herein, surface oxygen-doped carbon-supported Pd nanoparticles (Pd/C-O) were prepared via nitric acid oxidation and subsequent incipient wetness impregnation, demonstrating the tandem hydrogenation–acetalization–hydrogenolysis route of phenol to cyclohexyl methyl ether, achieving an significant yield of 97.9% in a methanol solvent at a low temperature of 110 °C. Catalytic mechanism investigation indicated that the in situ hydrogen spillover from Pd nanoparticles to the Pd–O–C interface formed H<sup>+</sup>–H<sup>−</sup> pairs, which acted as uncommon active sites for hydrogenation and hydrogenolysis steps and also provided Brønsted acid sites for the acetalization step, thereby triggering the facile preparation of cyclohexyl methyl ether. Furthermore, the prepared catalyst exhibited excellent catalytic generality for synthesizing cyclohexyl ethers from various phenols or alcohol solvents via a similar reaction route and great expansibility from diphenyl ethers via preliminary partial hydrogenation–alcoholysis steps. The study reports an interesting bifunctional catalysis for challenging tandem reaction routes toward cyclohexyl ether synthesis by harnessing an oxygen-doped carbon support to form transient H<sup>+</sup>–H<sup>−</sup> pairs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"26 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60268-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The one-pot hydrotreatment of phenols to cyclohexyl ethers is crucial but difficult to achieve for fine chemical synthesis owing to the easy overhydrogenation to cyclohexanols over traditional metal–acid bifunctional catalysts. Herein, surface oxygen-doped carbon-supported Pd nanoparticles (Pd/C-O) were prepared via nitric acid oxidation and subsequent incipient wetness impregnation, demonstrating the tandem hydrogenation–acetalization–hydrogenolysis route of phenol to cyclohexyl methyl ether, achieving an significant yield of 97.9% in a methanol solvent at a low temperature of 110 °C. Catalytic mechanism investigation indicated that the in situ hydrogen spillover from Pd nanoparticles to the Pd–O–C interface formed H+–H− pairs, which acted as uncommon active sites for hydrogenation and hydrogenolysis steps and also provided Brønsted acid sites for the acetalization step, thereby triggering the facile preparation of cyclohexyl methyl ether. Furthermore, the prepared catalyst exhibited excellent catalytic generality for synthesizing cyclohexyl ethers from various phenols or alcohol solvents via a similar reaction route and great expansibility from diphenyl ethers via preliminary partial hydrogenation–alcoholysis steps. The study reports an interesting bifunctional catalysis for challenging tandem reaction routes toward cyclohexyl ether synthesis by harnessing an oxygen-doped carbon support to form transient H+–H− pairs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.