s-specific structural elements attenuate interactions with regulator of G protein signaling (RGS) proteins.

Sabreen Higazy-Mreih, Meirav Avital-Shacham, Christian LeGouill, Michel Bouvier, Mickey Kosloff
{"title":"Gα<sub>s</sub>-specific structural elements attenuate interactions with regulator of G protein signaling (RGS) proteins.","authors":"Sabreen Higazy-Mreih, Meirav Avital-Shacham, Christian LeGouill, Michel Bouvier, Mickey Kosloff","doi":"10.1111/febs.70149","DOIUrl":null,"url":null,"abstract":"<p><p>Heterotrimeric (αβγ) G proteins are molecular switches that are activated by G protein-coupled receptors (GPCRs) and regulate numerous intracellular signaling cascades. Most active Gα subunits are inactivated by regulators of G protein signaling (RGS) proteins, which determine the duration of G protein-mediated signaling by accelerating the catalytic turn-off of the Gα subunit. However, the G protein Gα<sub>s</sub> does not interact with known RGS proteins. To understand the molecular basis for this divergent phenomenon, we combined a comparative structural analysis of experimental and modeled structures with functional biochemical assays. This analysis showed that Gα<sub>s</sub> contains unique structural elements in both the helical and the GTPase domains. Modeling suggested that helical domain insertions, which were missing in experimental structures, might project toward the interface with RGS proteins. Alternatively, residues in the Gα<sub>s</sub> GTPase domain might lead to direct interference with RGS binding. Mutagenesis of Gα<sub>s</sub> and measurements of RGS GTPase-activating protein (GAP) activity showed that three residues in the Gα<sub>s</sub> GTPase domain are both necessary and sufficient to prevent Gα<sub>s</sub> inactivation by RGSs. Indeed, substitution of all three Gα<sub>s</sub> residues with the corresponding residues from Gα<sub>i1</sub> enabled efficient inactivation by RGS proteins. These results shed new light on the mechanistic bases for G protein specificity toward RGS proteins.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterotrimeric (αβγ) G proteins are molecular switches that are activated by G protein-coupled receptors (GPCRs) and regulate numerous intracellular signaling cascades. Most active Gα subunits are inactivated by regulators of G protein signaling (RGS) proteins, which determine the duration of G protein-mediated signaling by accelerating the catalytic turn-off of the Gα subunit. However, the G protein Gαs does not interact with known RGS proteins. To understand the molecular basis for this divergent phenomenon, we combined a comparative structural analysis of experimental and modeled structures with functional biochemical assays. This analysis showed that Gαs contains unique structural elements in both the helical and the GTPase domains. Modeling suggested that helical domain insertions, which were missing in experimental structures, might project toward the interface with RGS proteins. Alternatively, residues in the Gαs GTPase domain might lead to direct interference with RGS binding. Mutagenesis of Gαs and measurements of RGS GTPase-activating protein (GAP) activity showed that three residues in the Gαs GTPase domain are both necessary and sufficient to prevent Gαs inactivation by RGSs. Indeed, substitution of all three Gαs residues with the corresponding residues from Gαi1 enabled efficient inactivation by RGS proteins. These results shed new light on the mechanistic bases for G protein specificity toward RGS proteins.

Gαs特异性结构元件减弱与G蛋白信号(RGS)蛋白的相互作用。
异三聚体(αβγ) G蛋白是由G蛋白偶联受体(gpcr)激活并调节许多细胞内信号级联反应的分子开关。大多数活性的Gα亚基被G蛋白信号转导(RGS)蛋白的调节因子灭活,通过加速Gα亚基的催化关闭来决定G蛋白介导的信号转导的持续时间。然而,G蛋白Gαs不与已知的RGS蛋白相互作用。为了了解这种分化现象的分子基础,我们将实验结构和模型结构的比较结构分析与功能生化分析相结合。分析结果表明,Gαs在螺旋结构域和GTPase结构域均含有独特的结构元件。模型显示,实验结构中缺失的螺旋结构域插入可能会向RGS蛋白的界面方向投射。另外,Gαs GTPase结构域的残基可能直接干扰RGS结合。g - αs的诱变和RGS gtase激活蛋白(GAP)活性的测定表明,g - αs GTPase结构域的三个残基是防止g - αs被RGS失活的必要和充分条件。事实上,用Gαi1的相应残基替换所有三个Gαs残基,可以有效地使RGS蛋白失活。这些结果揭示了G蛋白对RGS蛋白特异性的机制基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信