{"title":"Dynamic event-triggered adaptive control for electro-hydraulic servomechanism.","authors":"Chao Shen, Jianxin Zhu","doi":"10.1016/j.isatra.2025.05.027","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the adaptive robust control of electro-hydraulic servomechanisms subject to restricted data communication, unmeasurable state variables, and modeling uncertainties. A novel dynamic event-triggered adaptive robust control algorithm is proposed, which integrates a finite-time extended state observer (FTESO) with Pi-sigma fuzzy neural networks (PSFNN). In the developed framework, a PSFNN-enhanced FTESO is employed to simultaneously estimate both unmeasurable states and modeling uncertainties. To alleviate communication burdens, a dynamic event-triggering mechanism with the observed state deviation of the FTESO at adjacent triggering moments and virtual tracking errors as inputs is developed. Within the finite-time backstepping control architecture, an adaptive robust control law is systematically constructed for the electro-hydraulic servomechanism. Comparative simulations demonstrate that the proposed algorithm achieves rapid position tracking error convergence with reduced data transmission.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the adaptive robust control of electro-hydraulic servomechanisms subject to restricted data communication, unmeasurable state variables, and modeling uncertainties. A novel dynamic event-triggered adaptive robust control algorithm is proposed, which integrates a finite-time extended state observer (FTESO) with Pi-sigma fuzzy neural networks (PSFNN). In the developed framework, a PSFNN-enhanced FTESO is employed to simultaneously estimate both unmeasurable states and modeling uncertainties. To alleviate communication burdens, a dynamic event-triggering mechanism with the observed state deviation of the FTESO at adjacent triggering moments and virtual tracking errors as inputs is developed. Within the finite-time backstepping control architecture, an adaptive robust control law is systematically constructed for the electro-hydraulic servomechanism. Comparative simulations demonstrate that the proposed algorithm achieves rapid position tracking error convergence with reduced data transmission.