{"title":"Dynamic event-triggered adaptive control for electro-hydraulic servomechanism","authors":"Chao Shen , Jianxin Zhu","doi":"10.1016/j.isatra.2025.05.027","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the adaptive robust control of electro-hydraulic servomechanisms subject to restricted data communication, unmeasurable state variables, and modeling uncertainties. A novel dynamic event-triggered adaptive robust control algorithm is proposed, which integrates a finite-time extended state observer (FTESO) with Pi-sigma fuzzy neural networks (PSFNN). In the developed framework, a PSFNN-enhanced FTESO is employed to simultaneously estimate both unmeasurable states and modeling uncertainties. To alleviate communication burdens, a dynamic event-triggering mechanism with the observed state deviation of the FTESO at adjacent triggering moments and virtual tracking errors as inputs is developed. Within the finite-time backstepping control architecture, an adaptive robust control law is systematically constructed for the electro-hydraulic servomechanism. Comparative simulations demonstrate that the proposed algorithm achieves rapid position tracking error convergence with reduced data transmission.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"164 ","pages":"Pages 34-45"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825002629","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the adaptive robust control of electro-hydraulic servomechanisms subject to restricted data communication, unmeasurable state variables, and modeling uncertainties. A novel dynamic event-triggered adaptive robust control algorithm is proposed, which integrates a finite-time extended state observer (FTESO) with Pi-sigma fuzzy neural networks (PSFNN). In the developed framework, a PSFNN-enhanced FTESO is employed to simultaneously estimate both unmeasurable states and modeling uncertainties. To alleviate communication burdens, a dynamic event-triggering mechanism with the observed state deviation of the FTESO at adjacent triggering moments and virtual tracking errors as inputs is developed. Within the finite-time backstepping control architecture, an adaptive robust control law is systematically constructed for the electro-hydraulic servomechanism. Comparative simulations demonstrate that the proposed algorithm achieves rapid position tracking error convergence with reduced data transmission.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.