Complexity synchronization analysis of neurophysiological data: Theory and methods.

Frontiers in network physiology Pub Date : 2025-05-14 eCollection Date: 2025-01-01 DOI:10.3389/fnetp.2025.1570530
Ioannis Schizas, Sabrina Sullivan, Scott Kerick, Korosh Mahmoodi, J Cortney Bradford, David L Boothe, Piotr J Franaszczuk, Paolo Grigolini, Bruce J West
{"title":"Complexity synchronization analysis of neurophysiological data: Theory and methods.","authors":"Ioannis Schizas, Sabrina Sullivan, Scott Kerick, Korosh Mahmoodi, J Cortney Bradford, David L Boothe, Piotr J Franaszczuk, Paolo Grigolini, Bruce J West","doi":"10.3389/fnetp.2025.1570530","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>We present a theoretical foundation based on the spontaneous self-organized temporal criticality (SOTC) and multifractal dimensionality <math><mrow><mi>μ</mi></mrow> </math> to model complex neurophysiological and behavioral systems to infer the optimal empirical transfer of information among them. We hypothesize that heterogeneous time series characterizing the brain, heart, and lung organ-networks (ONs) are necessarily multifractal, whose level of complexity and, therefore, their information content is measured by their multifractal dimensions.</p><p><strong>Methods: </strong>We apply modified diffusion entropy analysis (MDEA) to assess multifractal dimensions of ON time series (ONTS), and complexity synchronization (CS) analysis to infer information transfer among ONs that are part of a network-of-organ-networks (NoONs). An automated parameter selection process is proposed that relies on the Kolmogorov-Smirnov statistic to properly choose stripe sizes which are crucial in the MDEA analysis using synthetic duration times derived from the Mittag-Leffler map, shows the strength of KS-based stripe size selection to track changes in the IPL parameter <math><mrow><mi>μ</mi></mrow> </math> . The purpose of this paper is to advance the validation, standardization, and reconstruct-ability of MDEA and CS analysis of heterogeneous neurophysiological time series data.</p><p><strong>Results: </strong>Results from processing these datasets show that the complexity of brain, heart, and lung ONTS co-vary over time during cognitive task performance in 44% of subjects, while complexity of brain-heart interactions significantly co-vary in 85% of subjects.</p><p><strong>Discussion: </strong>We conclude that certain principles, guidelines, and strategies for the application of MDEA analysis need further consideration. We conclude with a summary of the MDEA's limitations and future research directions.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"5 ","pages":"1570530"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2025.1570530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: We present a theoretical foundation based on the spontaneous self-organized temporal criticality (SOTC) and multifractal dimensionality μ to model complex neurophysiological and behavioral systems to infer the optimal empirical transfer of information among them. We hypothesize that heterogeneous time series characterizing the brain, heart, and lung organ-networks (ONs) are necessarily multifractal, whose level of complexity and, therefore, their information content is measured by their multifractal dimensions.

Methods: We apply modified diffusion entropy analysis (MDEA) to assess multifractal dimensions of ON time series (ONTS), and complexity synchronization (CS) analysis to infer information transfer among ONs that are part of a network-of-organ-networks (NoONs). An automated parameter selection process is proposed that relies on the Kolmogorov-Smirnov statistic to properly choose stripe sizes which are crucial in the MDEA analysis using synthetic duration times derived from the Mittag-Leffler map, shows the strength of KS-based stripe size selection to track changes in the IPL parameter μ . The purpose of this paper is to advance the validation, standardization, and reconstruct-ability of MDEA and CS analysis of heterogeneous neurophysiological time series data.

Results: Results from processing these datasets show that the complexity of brain, heart, and lung ONTS co-vary over time during cognitive task performance in 44% of subjects, while complexity of brain-heart interactions significantly co-vary in 85% of subjects.

Discussion: We conclude that certain principles, guidelines, and strategies for the application of MDEA analysis need further consideration. We conclude with a summary of the MDEA's limitations and future research directions.

神经生理数据的复杂性同步分析:理论与方法。
本文提出了基于自发自组织时间临界性(SOTC)和多重分形维数μ的复杂神经生理和行为系统建模的理论基础,以推断它们之间最优的经验信息传递。我们假设表征大脑、心脏和肺器官网络(on)的异构时间序列必然是多重分形的,其复杂性水平和信息含量是由它们的多重分形维数来衡量的。方法:应用改进的扩散熵分析(MDEA)评估器官网络时间序列(ONTS)的多重分形维数,并应用复杂性同步(CS)分析来推断器官网络(NoONs)中器官网络之间的信息传递。提出了一种基于Kolmogorov-Smirnov统计量的自动参数选择方法,利用Mittag-Leffler图的合成持续时间来正确选择在MDEA分析中至关重要的条纹尺寸,显示了基于ks的条纹尺寸选择在跟踪IPL参数μ变化方面的优势。本文的目的是推进异构神经生理时间序列数据的MDEA和CS分析的验证性、标准化和可重构性。结果:处理这些数据集的结果表明,44%的受试者在认知任务执行过程中,脑、心和肺ONTS的复杂性随时间共同变化,而脑-心相互作用的复杂性在85%的受试者中显着共同变化。讨论:我们认为应用MDEA分析的某些原则、指导方针和策略需要进一步考虑。最后,对MDEA的局限性和未来的研究方向进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信