{"title":"Investigating the effects of liquid handling robot pipetting speed on yeast growth and gene expression using growth assays and RNA-seq.","authors":"Shodai Taguchi, Ryosuke Matsuzawa, Yasuyuki Suda, Kenji Irie, Haruka Ozaki","doi":"10.17912/micropub.biology.001566","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the impact of experimental parameters like pipetting speed is essential in life science research but challenging in manual experiments. Recent advancements in laboratory automation enable precise control and systematic evaluation of these parameters. Here, we employed the Opentrons OT-2, an affordable, open-source liquid handling robot, to systematically investigate the effect of pipetting speed on growth and gene expression in the budding yeast <i>Saccharomyces cerevisiae</i> . Growth assays revealed no significant differences across the tested pipetting speeds (ANOVA, p > 0.05). RNA-seq analysis corroborated these findings, demonstrating highly similar gene expression profiles across all 24 samples (minimum Pearson correlation coefficient = 0.9528), with no differentially expressed genes identified by generalized linear model analysis (false discovery rate > 0.01). Our results highlight the utility of robotic platforms in optimizing experimental parameters, improving reproducibility, and enhancing accuracy in biological research, thus providing valuable insights for future applications.</p>","PeriodicalId":74192,"journal":{"name":"microPublication biology","volume":"2025 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"microPublication biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17912/micropub.biology.001566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the impact of experimental parameters like pipetting speed is essential in life science research but challenging in manual experiments. Recent advancements in laboratory automation enable precise control and systematic evaluation of these parameters. Here, we employed the Opentrons OT-2, an affordable, open-source liquid handling robot, to systematically investigate the effect of pipetting speed on growth and gene expression in the budding yeast Saccharomyces cerevisiae . Growth assays revealed no significant differences across the tested pipetting speeds (ANOVA, p > 0.05). RNA-seq analysis corroborated these findings, demonstrating highly similar gene expression profiles across all 24 samples (minimum Pearson correlation coefficient = 0.9528), with no differentially expressed genes identified by generalized linear model analysis (false discovery rate > 0.01). Our results highlight the utility of robotic platforms in optimizing experimental parameters, improving reproducibility, and enhancing accuracy in biological research, thus providing valuable insights for future applications.