Biomimetic Microchannel Integrated Silk Fibroin Scaffold for Regeneration of Intervertebral Disc Degeneration.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL
Biomaterials research Pub Date : 2025-05-28 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0203
Tongxing Zhang, Zhaojun Cheng, Zhen Zhang, Lilong Du, Zhenhua Li, Zhuyan Jiang, Zhaomin Zheng, Deling Kong, Meifeng Zhu, Wen Li, Baoshan Xu
{"title":"Biomimetic Microchannel Integrated Silk Fibroin Scaffold for Regeneration of Intervertebral Disc Degeneration.","authors":"Tongxing Zhang, Zhaojun Cheng, Zhen Zhang, Lilong Du, Zhenhua Li, Zhuyan Jiang, Zhaomin Zheng, Deling Kong, Meifeng Zhu, Wen Li, Baoshan Xu","doi":"10.34133/bmr.0203","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is the primary cause of low back pain, and patients with severe degeneration usually require lumbar fusion or total disc arthroplasty. Lumbar fusion carries the risk of accelerated degeneration of the adjacent intervertebral disc (IVD), and total disc arthroplasty could reduce the risk. However, the clinical application of artificial IVD whose nondegradable properties make it difficult to restore the biological function of the IVD. Therefore, we intend to fabricate a novel biomimetic microchannel integrated silk fibroin scaffold (BMI-SF scaffold) containing annulus fibrosus with oriented cross-microchannels and nucleus pulposus with interconnected porous structure. The BMI-SF scaffold exhibits controllable microchannels as well as excellent biocompatibility and biodegradability. In vitro and in vivo studies have demonstrated that microchannels can direct cells into the BMI-SF scaffold and enhance neovascularization, supplying adequate nutritional support for tissue regeneration. The IVD replacement model showed that the BMI-SF scaffold has superior regenerative effects, such as restoring IVD height and providing motion segments with dynamic mechanical properties akin to the natural IVD. In this study, the BMI-SF scaffold developed using controlled microchannels provides a new strategy for patients with severe IVDD and has broad clinical application prospects.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0203"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IVDD) is the primary cause of low back pain, and patients with severe degeneration usually require lumbar fusion or total disc arthroplasty. Lumbar fusion carries the risk of accelerated degeneration of the adjacent intervertebral disc (IVD), and total disc arthroplasty could reduce the risk. However, the clinical application of artificial IVD whose nondegradable properties make it difficult to restore the biological function of the IVD. Therefore, we intend to fabricate a novel biomimetic microchannel integrated silk fibroin scaffold (BMI-SF scaffold) containing annulus fibrosus with oriented cross-microchannels and nucleus pulposus with interconnected porous structure. The BMI-SF scaffold exhibits controllable microchannels as well as excellent biocompatibility and biodegradability. In vitro and in vivo studies have demonstrated that microchannels can direct cells into the BMI-SF scaffold and enhance neovascularization, supplying adequate nutritional support for tissue regeneration. The IVD replacement model showed that the BMI-SF scaffold has superior regenerative effects, such as restoring IVD height and providing motion segments with dynamic mechanical properties akin to the natural IVD. In this study, the BMI-SF scaffold developed using controlled microchannels provides a new strategy for patients with severe IVDD and has broad clinical application prospects.

仿生微通道集成丝素蛋白支架用于椎间盘退变的再生。
椎间盘退变(IVDD)是腰痛的主要原因,严重退变的患者通常需要腰椎融合术或全椎间盘置换术。腰椎融合术有加速临近椎间盘退变(IVD)的风险,全椎间盘置换术可以降低风险。然而,人工IVD的不可降解性使其在临床应用中难以恢复其生物学功能。因此,我们打算制造一种新型的仿生微通道集成丝素蛋白支架(BMI-SF支架),该支架含有定向交叉微通道的纤维环和相互连接的多孔结构的髓核。BMI-SF支架具有可控微通道、良好的生物相容性和生物降解性。体外和体内研究表明,微通道可以引导细胞进入BMI-SF支架,增强新生血管,为组织再生提供足够的营养支持。IVD置换模型显示,BMI-SF支架具有优越的再生效果,如恢复IVD高度,并为运动段提供类似于天然IVD的动态力学性能。本研究采用可控微通道开发的BMI-SF支架为重度IVDD患者提供了一种新的治疗策略,具有广阔的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信