Francisco J Quero, Guy Aidelberg, Hortense Vielfaure, Yann Huon de Kermadec, Severine Cazaux, Amir Pandi, Ana Pascual-Garrigos, Anibal Arce, Samuel Sakyi, Urs Gaudenz, Fernan Federici, Jennifer C Molloy, Ariel B Lindner
{"title":"qByte: An open-source isothermal fluorimeter for democratizing analysis of nucleic acids, proteins and cells.","authors":"Francisco J Quero, Guy Aidelberg, Hortense Vielfaure, Yann Huon de Kermadec, Severine Cazaux, Amir Pandi, Ana Pascual-Garrigos, Anibal Arce, Samuel Sakyi, Urs Gaudenz, Fernan Federici, Jennifer C Molloy, Ariel B Lindner","doi":"10.1371/journal.pbio.3003199","DOIUrl":null,"url":null,"abstract":"<p><p>Access to affordable and reliable scientific instrumentation remains a significant barrier to the democratization of healthcare and scientific research. In the field of biotechnology, in particular, the complexity, cost, and infrastructure requirements of many instruments continue to limit their accessibility, especially in resource-limited environments. Despite the recent increase in the development of open-source tools, driven by advances in digital fabrication and electronic prototyping, few of these projects have reached large-scale implementation or validation in real-world settings. Here, we present qByte, an open-source, 8-tube isothermal fluorimeter designed to overcome these barriers by offering a cost-effective ($60) yet production-ready solution. qByte leverages standard digital manufacturing and Printed Circuit Board (PCB) assembly techniques and is designed to be portable, making it ideal for both laboratory and field use. The device has been benchmarked against commercial real-time thermocyclers and spectrophotometers, showing comparable results across four key applications: nucleic acid amplification and detection, including the on-site diagnosis of human parasites in Ghana, analysis of protein activity and stability, genetic construct characterization, and bacterial viability tests. Taken together, our results proved qByte as flexible and reliable equipment for a variety of biological tests and applications, while its affordability and open-source design simplify further development and allow adaptation to the needs of future users.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003199"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003199","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Access to affordable and reliable scientific instrumentation remains a significant barrier to the democratization of healthcare and scientific research. In the field of biotechnology, in particular, the complexity, cost, and infrastructure requirements of many instruments continue to limit their accessibility, especially in resource-limited environments. Despite the recent increase in the development of open-source tools, driven by advances in digital fabrication and electronic prototyping, few of these projects have reached large-scale implementation or validation in real-world settings. Here, we present qByte, an open-source, 8-tube isothermal fluorimeter designed to overcome these barriers by offering a cost-effective ($60) yet production-ready solution. qByte leverages standard digital manufacturing and Printed Circuit Board (PCB) assembly techniques and is designed to be portable, making it ideal for both laboratory and field use. The device has been benchmarked against commercial real-time thermocyclers and spectrophotometers, showing comparable results across four key applications: nucleic acid amplification and detection, including the on-site diagnosis of human parasites in Ghana, analysis of protein activity and stability, genetic construct characterization, and bacterial viability tests. Taken together, our results proved qByte as flexible and reliable equipment for a variety of biological tests and applications, while its affordability and open-source design simplify further development and allow adaptation to the needs of future users.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.