Computational and biological modeling of IGF1R inhibition for multifocal medulloblastoma.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Alyssa G Almer, Samuel V Rasmussen, Dina Kats, Matthew N Svalina, Bonnie L Cole, Mohammadreza Khani, Sonja Chen, Samuel H Cheshier, Bryn A Martin, Noah E Berlow, Charles Keller
{"title":"Computational and biological modeling of IGF1R inhibition for multifocal medulloblastoma.","authors":"Alyssa G Almer, Samuel V Rasmussen, Dina Kats, Matthew N Svalina, Bonnie L Cole, Mohammadreza Khani, Sonja Chen, Samuel H Cheshier, Bryn A Martin, Noah E Berlow, Charles Keller","doi":"10.1038/s43856-025-00925-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leptomeningeal metastasis in medulloblastoma poses challenges for effective treatments due to the blood-brain barrier (BBB), which may be addressed through intrathecal or intraventricular drug delivery. However, the lack of pharmacokinetic modeling for pathological cerebrospinal fluid (CSF) geometries has limited the ability to predict effective intrathecal and intraventricular drug exposure.</p><p><strong>Methods: </strong>A patient-specific computational fluid dynamics \"in silico\" trial was conducted to simulate CSF movement to examine the tumor microenvironment in terms of drug-target exposure over time following intraventricular delivery via Omaya Reservoir. Simultaneously, we conducted cellular adhesion experiments to test the therapeutic potential of IGF1R inhibition on metastasis under patient-specific flow conditions generated by computational analysis.</p><p><strong>Results: </strong>A 3-dimensional computational fluid dynamics (CFD) model based on patient-specific conditions was obtained to predict an efficacious drug concentration, providing guidance for therapeutic drug exposure at targeted sites. Microfluidic experiments for IGF1R inhibition of cellular adhesion showed the potential for reduced attachment of medulloblastoma to leptomeningeal cells to prevent metastasis.</p><p><strong>Conclusions: </strong>This study offers insights from patient-specific in silico trials for the precision delivery of small-molecule drugs for the treatment of central nervous system (CNS) malignancies.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"206"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119998/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00925-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Leptomeningeal metastasis in medulloblastoma poses challenges for effective treatments due to the blood-brain barrier (BBB), which may be addressed through intrathecal or intraventricular drug delivery. However, the lack of pharmacokinetic modeling for pathological cerebrospinal fluid (CSF) geometries has limited the ability to predict effective intrathecal and intraventricular drug exposure.

Methods: A patient-specific computational fluid dynamics "in silico" trial was conducted to simulate CSF movement to examine the tumor microenvironment in terms of drug-target exposure over time following intraventricular delivery via Omaya Reservoir. Simultaneously, we conducted cellular adhesion experiments to test the therapeutic potential of IGF1R inhibition on metastasis under patient-specific flow conditions generated by computational analysis.

Results: A 3-dimensional computational fluid dynamics (CFD) model based on patient-specific conditions was obtained to predict an efficacious drug concentration, providing guidance for therapeutic drug exposure at targeted sites. Microfluidic experiments for IGF1R inhibition of cellular adhesion showed the potential for reduced attachment of medulloblastoma to leptomeningeal cells to prevent metastasis.

Conclusions: This study offers insights from patient-specific in silico trials for the precision delivery of small-molecule drugs for the treatment of central nervous system (CNS) malignancies.

多灶性髓母细胞瘤IGF1R抑制的计算和生物学模型。
背景:由于血脑屏障(BBB)的存在,成神经管细胞瘤的小脑膜转移给有效治疗带来了挑战,这可能通过鞘内或脑室内给药来解决。然而,缺乏病理性脑脊液(CSF)几何形状的药代动力学模型限制了预测有效鞘内和脑室内药物暴露的能力。方法:进行患者特异性计算流体动力学“计算机”试验,模拟脑脊液运动,以检测经Omaya水库脑室内给药后药物靶点暴露的肿瘤微环境。同时,我们进行了细胞粘附实验,在计算分析生成的患者特异性血流条件下,测试IGF1R抑制转移的治疗潜力。结果:建立了基于患者特异性条件的三维计算流体动力学(CFD)模型,预测药物的有效浓度,为靶向部位的治疗药物暴露提供指导。IGF1R抑制细胞粘附的微流控实验显示,髓母细胞瘤可能会减少对脑膜轻脑膜细胞的附着,从而阻止转移。结论:该研究为精确递送用于治疗中枢神经系统(CNS)恶性肿瘤的小分子药物的患者特异性硅片试验提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信