Solving the Richards infiltration equation by coupling physics-informed neural networks with Hydrus-1D.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yanling Li, Qianxing Sun, Yuliang Fu, Junfang Wei
{"title":"Solving the Richards infiltration equation by coupling physics-informed neural networks with Hydrus-1D.","authors":"Yanling Li, Qianxing Sun, Yuliang Fu, Junfang Wei","doi":"10.1038/s41598-025-02978-w","DOIUrl":null,"url":null,"abstract":"<p><p>The movement and infiltration of groundwater play a crucial role in environmental engineering and water resource management. The Richards equation, a fundamental model describing water flow in unsaturated soils, encounters significant challenges in traditional numerical solutions due to its strong nonlinearity, complex boundary conditions, and computational inefficiency. To address these issues, this study proposes an improved physics-informed neural network (PINN) method based on data fusion. This approach is designed to handle the intricate boundary conditions and nonlinear water diffusion characteristics in groundwater seepage by integrating data with physical constraints, thereby forming a dual-driven solution framework that leverages both data and physics. The proposed improved algorithm integrates Hydrus data, leveraging a small portion of data to reduce the model's dependence on parameter initialization. Simultaneously, it enables the model to automatically adjust to variations in physical processes under different data conditions, thereby enhancing the accuracy and stability of the solution. Comparaison with experimental results demonstrates the strong generalization ability of this method, particularly in data-scarce regions, where physical constraints ensure the reliability of the model's solutions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18649"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-02978-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The movement and infiltration of groundwater play a crucial role in environmental engineering and water resource management. The Richards equation, a fundamental model describing water flow in unsaturated soils, encounters significant challenges in traditional numerical solutions due to its strong nonlinearity, complex boundary conditions, and computational inefficiency. To address these issues, this study proposes an improved physics-informed neural network (PINN) method based on data fusion. This approach is designed to handle the intricate boundary conditions and nonlinear water diffusion characteristics in groundwater seepage by integrating data with physical constraints, thereby forming a dual-driven solution framework that leverages both data and physics. The proposed improved algorithm integrates Hydrus data, leveraging a small portion of data to reduce the model's dependence on parameter initialization. Simultaneously, it enables the model to automatically adjust to variations in physical processes under different data conditions, thereby enhancing the accuracy and stability of the solution. Comparaison with experimental results demonstrates the strong generalization ability of this method, particularly in data-scarce regions, where physical constraints ensure the reliability of the model's solutions.

Abstract Image

Abstract Image

Abstract Image

通过将物理信息神经网络与Hydrus-1D相结合来求解Richards渗透方程。
地下水的运动和入渗在环境工程和水资源管理中起着至关重要的作用。Richards方程是描述非饱和土中水流的基本模型,由于其强烈的非线性、复杂的边界条件和计算效率低下,在传统的数值解中遇到了重大挑战。为了解决这些问题,本研究提出了一种改进的基于数据融合的物理信息神经网络(PINN)方法。该方法旨在通过将数据与物理约束相结合,处理地下水渗流中复杂的边界条件和非线性水扩散特征,从而形成数据和物理双重驱动的解决框架。提出的改进算法集成了Hydrus数据,利用一小部分数据来减少模型对参数初始化的依赖。同时,它使模型能够自动适应不同数据条件下物理过程的变化,从而提高了解的准确性和稳定性。与实验结果的对比表明,该方法具有较强的泛化能力,特别是在数据稀缺区域,物理约束保证了模型解的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信