{"title":"Influence function-based empirical likelihood for area under the receiver operating characteristic curve in presence of covariates.","authors":"Baoying Yang, Xinjie Hu, Gengsheng Qin","doi":"10.1177/09622802251345343","DOIUrl":null,"url":null,"abstract":"<p><p>In receiver operating characteristicROC analysis, the area under the ROC curve (AUC) is a popular one number summary of the discriminatory accuracy of a diagnostic test. AUC measures the overall diagnostic accuracy of a test but fails to account for the effect of covariates when covariates are present and associated with the test results. Adjustment for covariate effects can greatly improve the diagnostic accuracy of a test. In this paper, using information provided by the influence function, empirical likelihood (EL) methods are proposed for inferences of AUC in presence of covariates. For parameters in the AUC regression model, it is shown that the asymptotic distribution of the influence function-based empirical log-likelihood ratio statistic is a standard chi-square distribution. Hence, confidence regions for the regression parameters can be obtained without any variance estimation. Simulation studies are conducted to compare the finite sample performances of the proposed EL based methods with the existing normal approximation (NA) based method in the AUC regression. Simulation results indicate that the bootstrap-calibrated influence function-based empirical likelihood (BIFEL ) confidence region outperforms the NA-based confidence region in terms of coverage probability. We also propose an interval estimation method for the covariate-adjusted AUC based on the BIFEL confidence region. Finally, we illustrate the recommended method with a real prostate-specific antigen data example.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251345343"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251345343","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
In receiver operating characteristicROC analysis, the area under the ROC curve (AUC) is a popular one number summary of the discriminatory accuracy of a diagnostic test. AUC measures the overall diagnostic accuracy of a test but fails to account for the effect of covariates when covariates are present and associated with the test results. Adjustment for covariate effects can greatly improve the diagnostic accuracy of a test. In this paper, using information provided by the influence function, empirical likelihood (EL) methods are proposed for inferences of AUC in presence of covariates. For parameters in the AUC regression model, it is shown that the asymptotic distribution of the influence function-based empirical log-likelihood ratio statistic is a standard chi-square distribution. Hence, confidence regions for the regression parameters can be obtained without any variance estimation. Simulation studies are conducted to compare the finite sample performances of the proposed EL based methods with the existing normal approximation (NA) based method in the AUC regression. Simulation results indicate that the bootstrap-calibrated influence function-based empirical likelihood (BIFEL ) confidence region outperforms the NA-based confidence region in terms of coverage probability. We also propose an interval estimation method for the covariate-adjusted AUC based on the BIFEL confidence region. Finally, we illustrate the recommended method with a real prostate-specific antigen data example.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)