{"title":"Application of induced pluripotent stem cells in the conservation of endangered animals.","authors":"Jiao Lou, Weina Li, Panlong Chen, Haiyan Chen, Amna Shakoor, Yunlong Chen, Jinlian Hua, Yan Wang, Shiqiang Zhang","doi":"10.1186/s13287-025-04392-5","DOIUrl":null,"url":null,"abstract":"<p><p>The accelerating biodiversity crisis urgently demands innovative approaches that transcend traditional conservation strategies, which are often constrained by genetic bottlenecks and disease risks. Induced pluripotent stem cells (iPSCs) technology emerges as a transformative solution, enabling non-invasive genetic preservation and multi-pathway species recovery. This review synthesizes advances in reprogramming somatic cells from endangered species into iPSCs through integration-free strategies, such as mRNA, Sendai virus, episomal systems, adenoviruses and chemical induction, thereby reducing genomic instability. We highlight breakthroughs in differentiating iPSCs into functional gametes for assisted reproduction and blastoids formation for embryonic reconstruction, circumventing donor oocyte dependency and genetic homogeneity risks. Despite challenges in lineage specification and epigenetic fidelity, combining iPSC biobanking with ecosystem management enables large-scale genetic rescue. By combining these technologies with ethical frameworks and habitat restoration, the plasticity of cells may be transformed into population resilience, potentially redefining biodiversity conservation.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"261"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04392-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The accelerating biodiversity crisis urgently demands innovative approaches that transcend traditional conservation strategies, which are often constrained by genetic bottlenecks and disease risks. Induced pluripotent stem cells (iPSCs) technology emerges as a transformative solution, enabling non-invasive genetic preservation and multi-pathway species recovery. This review synthesizes advances in reprogramming somatic cells from endangered species into iPSCs through integration-free strategies, such as mRNA, Sendai virus, episomal systems, adenoviruses and chemical induction, thereby reducing genomic instability. We highlight breakthroughs in differentiating iPSCs into functional gametes for assisted reproduction and blastoids formation for embryonic reconstruction, circumventing donor oocyte dependency and genetic homogeneity risks. Despite challenges in lineage specification and epigenetic fidelity, combining iPSC biobanking with ecosystem management enables large-scale genetic rescue. By combining these technologies with ethical frameworks and habitat restoration, the plasticity of cells may be transformed into population resilience, potentially redefining biodiversity conservation.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.