{"title":"Chromosome-level genome assembly of scalloped spiny lobster Panulirus homarus homarus.","authors":"Dongfang Sun, Jianjian Lv, Baoquan Gao, Shaoting Jia, Ping Liu, Jian Li, Jitao Li, Xianyun Ren","doi":"10.1038/s41597-025-05253-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lobsters, aquatic organisms of significant economic value, hold an important position in the global aquaculture and fisheries industries. However, due to overfishing and ecological change, the populations of certain lobster species have declined dramatically, prompting conservation efforts in various countries. However, limited genomics research has restricted our capacity to conserve and exploit lobster germplasm resources. Here, we present a chromosome-level reference genome for Panulirus homarus homarus constructed using PacBio long-read sequencing and Hi-C data. The genome assembly size was 2.61 Gb, with a contig N50 of 5.43 Mb, and a scaffold N50 of 36.69 Mb. The assembled sequences were anchored to 73 chromosomes, covering 96.05% of the total genome. A total of 25,580 protein-coding genes were predicted, and 99.98% of the genes were functionally annotated using various protein databases. The high-quality genome assembly provides a valuable resource for studying the biology and evolutionary history of P. h. homarus, and could facilitate sustainable resource management, aquaculture, and conservation of the species.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"900"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12120130/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05253-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lobsters, aquatic organisms of significant economic value, hold an important position in the global aquaculture and fisheries industries. However, due to overfishing and ecological change, the populations of certain lobster species have declined dramatically, prompting conservation efforts in various countries. However, limited genomics research has restricted our capacity to conserve and exploit lobster germplasm resources. Here, we present a chromosome-level reference genome for Panulirus homarus homarus constructed using PacBio long-read sequencing and Hi-C data. The genome assembly size was 2.61 Gb, with a contig N50 of 5.43 Mb, and a scaffold N50 of 36.69 Mb. The assembled sequences were anchored to 73 chromosomes, covering 96.05% of the total genome. A total of 25,580 protein-coding genes were predicted, and 99.98% of the genes were functionally annotated using various protein databases. The high-quality genome assembly provides a valuable resource for studying the biology and evolutionary history of P. h. homarus, and could facilitate sustainable resource management, aquaculture, and conservation of the species.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.