RETINA: Reconstruction-based pre-trained enhanced TransUNet for electron microscopy segmentation on the CEM500K dataset.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Cheng Xing, Ronald Xie, Gary D Bader
{"title":"RETINA: Reconstruction-based pre-trained enhanced TransUNet for electron microscopy segmentation on the CEM500K dataset.","authors":"Cheng Xing, Ronald Xie, Gary D Bader","doi":"10.1371/journal.pcbi.1013115","DOIUrl":null,"url":null,"abstract":"<p><p>Electron microscopy (EM) has revolutionized our understanding of cellular structures at the nanoscale. Accurate image segmentation is required for analyzing EM images. While manual segmentation is reliable, it is labor-intensive, incentivizing the development of automated segmentation methods. Although deep learning-based segmentation has demonstrated expert-level performance, it lacks generalizable performance across diverse EM datasets. Current approaches usually use either convolutional or transformer-based neural networks for image feature extraction. We developed the RETINA method, which combines pre-training on the large, unlabeled CEM500K EM image dataset with a hybrid neural-network model architecture that integrates both local (convolutional layer) and global (transformer layer) image processing to learn from manual image annotations. RETINA outperformed existing models on cellular structure segmentation on five public EM datasets. This improvement works toward automated cellular structure segmentation for the EM community.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 5","pages":"e1013115"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Electron microscopy (EM) has revolutionized our understanding of cellular structures at the nanoscale. Accurate image segmentation is required for analyzing EM images. While manual segmentation is reliable, it is labor-intensive, incentivizing the development of automated segmentation methods. Although deep learning-based segmentation has demonstrated expert-level performance, it lacks generalizable performance across diverse EM datasets. Current approaches usually use either convolutional or transformer-based neural networks for image feature extraction. We developed the RETINA method, which combines pre-training on the large, unlabeled CEM500K EM image dataset with a hybrid neural-network model architecture that integrates both local (convolutional layer) and global (transformer layer) image processing to learn from manual image annotations. RETINA outperformed existing models on cellular structure segmentation on five public EM datasets. This improvement works toward automated cellular structure segmentation for the EM community.

视网膜:基于重建的预训练增强TransUNet,用于CEM500K数据集上的电子显微镜分割。
电子显微镜(EM)彻底改变了我们对纳米级细胞结构的理解。EM图像分析需要精确的图像分割。虽然人工分割是可靠的,但它是劳动密集型的,激励了自动分割方法的发展。尽管基于深度学习的分割已经证明了专家级的性能,但它缺乏跨不同EM数据集的通用性能。目前的方法通常使用卷积或基于变换的神经网络进行图像特征提取。我们开发了RETINA方法,该方法将大型未标记的CEM500K EM图像数据集的预训练与混合神经网络模型架构相结合,该模型架构集成了局部(卷积层)和全局(变压器层)图像处理,以从手动图像注释中学习。在5个公开的EM数据集上,视网膜在细胞结构分割上优于现有模型。这一改进为EM社区实现了自动细胞结构分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信