{"title":"RETINA: Reconstruction-based pre-trained enhanced TransUNet for electron microscopy segmentation on the CEM500K dataset.","authors":"Cheng Xing, Ronald Xie, Gary D Bader","doi":"10.1371/journal.pcbi.1013115","DOIUrl":null,"url":null,"abstract":"<p><p>Electron microscopy (EM) has revolutionized our understanding of cellular structures at the nanoscale. Accurate image segmentation is required for analyzing EM images. While manual segmentation is reliable, it is labor-intensive, incentivizing the development of automated segmentation methods. Although deep learning-based segmentation has demonstrated expert-level performance, it lacks generalizable performance across diverse EM datasets. Current approaches usually use either convolutional or transformer-based neural networks for image feature extraction. We developed the RETINA method, which combines pre-training on the large, unlabeled CEM500K EM image dataset with a hybrid neural-network model architecture that integrates both local (convolutional layer) and global (transformer layer) image processing to learn from manual image annotations. RETINA outperformed existing models on cellular structure segmentation on five public EM datasets. This improvement works toward automated cellular structure segmentation for the EM community.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 5","pages":"e1013115"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Electron microscopy (EM) has revolutionized our understanding of cellular structures at the nanoscale. Accurate image segmentation is required for analyzing EM images. While manual segmentation is reliable, it is labor-intensive, incentivizing the development of automated segmentation methods. Although deep learning-based segmentation has demonstrated expert-level performance, it lacks generalizable performance across diverse EM datasets. Current approaches usually use either convolutional or transformer-based neural networks for image feature extraction. We developed the RETINA method, which combines pre-training on the large, unlabeled CEM500K EM image dataset with a hybrid neural-network model architecture that integrates both local (convolutional layer) and global (transformer layer) image processing to learn from manual image annotations. RETINA outperformed existing models on cellular structure segmentation on five public EM datasets. This improvement works toward automated cellular structure segmentation for the EM community.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.