Juan Deng, Xiao Huang, Meng Wang, Qian Li, Ling Gong, Bisheng Huang, Kun Yu
{"title":"A novel-miR-164 from Atractylodes lancea targets AlNAC1 regulating leaf senescence.","authors":"Juan Deng, Xiao Huang, Meng Wang, Qian Li, Ling Gong, Bisheng Huang, Kun Yu","doi":"10.1007/s00299-025-03527-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>A novel miR164-AlNAC1 module adjusting the expression of genes related to chlorophyll synthesis and ROS synthesis, and regulating leaf senescence in Atractylodes lancea. Leaf senescence is a critical developmental process regulated by complex genetic networks. In this study, a novel miRNA belonging to the MIR164 family was identified as a key regulator of leaf senescence in A. lancea by targeting the transcription factor AlNAC1. Bioinformatics analysis revealed that target gene AlNAC1 was closely related to the senescence-associated gene ANAC092 in Arabidopsis. The qRT-PCR and tobacco transient expression demonstrated nov-miR164 negatively regulated AlNAC1. Subcellular localization and transcriptional activity assays revealed that AlNAC1 localized to the nucleus and functioned as a transcriptional activator. Furthermore, EMSA experiments showed that AlNAC1 bound to the G-box motifs on the promoters of AlNYC, AlPAO, and AlRbohC. With the aging of A. lancea leaves, the expression of nov-miR164 decreased, while AlNAC1 and senescence-associated genes (AlSAG21, AlNYC, AlPAO, and AlRbohC) were significantly upregulated. Agrobacterium-mediated transient expression experiment results demonstrated that nov-miR164 negatively regulated AlNAC1 to suppress chlorophyll degradation and ROS accumulation, thereby delaying leaf senescence. Our findings provide new insights into the molecular mechanisms of leaf senescence in A. lancea and highlight the potential of nov-miR164 as a target for increasing crop yield and improving crop longevity.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 6","pages":"133"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03527-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: A novel miR164-AlNAC1 module adjusting the expression of genes related to chlorophyll synthesis and ROS synthesis, and regulating leaf senescence in Atractylodes lancea. Leaf senescence is a critical developmental process regulated by complex genetic networks. In this study, a novel miRNA belonging to the MIR164 family was identified as a key regulator of leaf senescence in A. lancea by targeting the transcription factor AlNAC1. Bioinformatics analysis revealed that target gene AlNAC1 was closely related to the senescence-associated gene ANAC092 in Arabidopsis. The qRT-PCR and tobacco transient expression demonstrated nov-miR164 negatively regulated AlNAC1. Subcellular localization and transcriptional activity assays revealed that AlNAC1 localized to the nucleus and functioned as a transcriptional activator. Furthermore, EMSA experiments showed that AlNAC1 bound to the G-box motifs on the promoters of AlNYC, AlPAO, and AlRbohC. With the aging of A. lancea leaves, the expression of nov-miR164 decreased, while AlNAC1 and senescence-associated genes (AlSAG21, AlNYC, AlPAO, and AlRbohC) were significantly upregulated. Agrobacterium-mediated transient expression experiment results demonstrated that nov-miR164 negatively regulated AlNAC1 to suppress chlorophyll degradation and ROS accumulation, thereby delaying leaf senescence. Our findings provide new insights into the molecular mechanisms of leaf senescence in A. lancea and highlight the potential of nov-miR164 as a target for increasing crop yield and improving crop longevity.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.