Surface melting-driven hydrogen absorption for high-pressure polyhydride synthesis.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ryuhei Sato, Lewis J Conway, Di Zhang, Chris J Pickard, Kazuto Akagi, Kartik Sau, Hao Li, Shin-Ichi Orimo
{"title":"Surface melting-driven hydrogen absorption for high-pressure polyhydride synthesis.","authors":"Ryuhei Sato, Lewis J Conway, Di Zhang, Chris J Pickard, Kazuto Akagi, Kartik Sau, Hao Li, Shin-Ichi Orimo","doi":"10.1073/pnas.2413480122","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of new polyhydrides with high superconducting <i>T</i><sub>c</sub> is challenging owing to the high pressures and temperatures required. In this study, we used machine-learning potential molecular dynamics simulations to investigate the initial stage of polyhydride formation in calcium hydrides. Upon contact with high-pressure H<sub>2</sub>, the surface of CaH<sub>2</sub> melts, leading to CaH<sub>4</sub> formation. This surface melting proceeds via CaH<sub>4</sub> liquid phase as an intermediate state. High pressure reduces not only the hydrogenation (CaH<sub>2</sub>(s) + H<sub>2</sub>(l) ↔ CaH<sub>4</sub>(s)) enthalpy but also the enthalpy for liquid polyhydride formation (CaH<sub>2</sub>(s) + H<sub>2</sub>(l) ↔ CaH<sub>4</sub>(l)). Consequently, this surface melting process becomes more favorable than the fusion of the polyhydride bulk. Thus, high pressure not only shifts the equilibrium toward the polyhydride product but also lowers the activation energy, thereby promoting the hydrogenation reaction. From these thermodynamic insights, we propose structure-search criteria for polyhydride synthesis that are both computationally effective and experimentally relevant. These criteria are based on bulk properties, such as polyhydride (product) melting temperature and pressure-dependent hydrogenation enthalpy, readily determined through supplementary calculations during structure prediction workflows.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 22","pages":"e2413480122"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2413480122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of new polyhydrides with high superconducting Tc is challenging owing to the high pressures and temperatures required. In this study, we used machine-learning potential molecular dynamics simulations to investigate the initial stage of polyhydride formation in calcium hydrides. Upon contact with high-pressure H2, the surface of CaH2 melts, leading to CaH4 formation. This surface melting proceeds via CaH4 liquid phase as an intermediate state. High pressure reduces not only the hydrogenation (CaH2(s) + H2(l) ↔ CaH4(s)) enthalpy but also the enthalpy for liquid polyhydride formation (CaH2(s) + H2(l) ↔ CaH4(l)). Consequently, this surface melting process becomes more favorable than the fusion of the polyhydride bulk. Thus, high pressure not only shifts the equilibrium toward the polyhydride product but also lowers the activation energy, thereby promoting the hydrogenation reaction. From these thermodynamic insights, we propose structure-search criteria for polyhydride synthesis that are both computationally effective and experimentally relevant. These criteria are based on bulk properties, such as polyhydride (product) melting temperature and pressure-dependent hydrogenation enthalpy, readily determined through supplementary calculations during structure prediction workflows.

高压多氢化物合成中表面熔化驱动吸氢。
由于需要较高的压力和温度,合成具有高超导Tc的新型多氢化物具有挑战性。在这项研究中,我们使用机器学习电位分子动力学模拟来研究氢化钙中多氢化物形成的初始阶段。与高压H2接触后,CaH2表面熔化,形成CaH4。这种表面熔化通过CaH4液相作为中间态进行。高压不仅降低了氢化作用(CaH2(s) + H2(l)↔CaH4(s))的焓,而且也降低了液体多氢化物形成的焓(CaH2(s) + H2(l)↔CaH4(l))。因此,这种表面熔化过程比聚氢化物体的熔合过程更有利。因此,高压不仅使平衡向多氢化物产物转移,而且降低了活化能,从而促进了加氢反应。从这些热力学的见解,我们提出了结构搜索标准的多氢化物合成是计算有效和实验相关。这些标准是基于整体性质,如多氢化物(产物)熔化温度和压力相关的加氢焓,很容易通过结构预测工作流程中的补充计算来确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信