Estimation of finite population mean in a complex survey sampling.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-05-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0324559
Mohsin Abbas, Muhammad Ahmed Shehzad, Mahwish Rabia, Haris Khurram, Muhammad Ijaz
{"title":"Estimation of finite population mean in a complex survey sampling.","authors":"Mohsin Abbas, Muhammad Ahmed Shehzad, Mahwish Rabia, Haris Khurram, Muhammad Ijaz","doi":"10.1371/journal.pone.0324559","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate estimation of the finite population mean is a fundamental challenge in survey sampling, especially when dealing with large or complex populations. Traditional methods like simple random sampling may not always provide reliable or efficient estimates in such cases. Motivated by this, the current study explores complex sampling techniques to improve the precision and accuracy of mean estimators. Specifically, we employ two-stage and three-stage cluster sampling methods to develop unbiased estimators for the finite population mean. Building upon these, the next phase of the study formulates unbiased mean estimators using stratified two- and three-stage cluster sampling. To further enhance the precision of these estimators, a ranked-set sampling strategy is applied to the secondary and tertiary sampling stages. Additionally, unbiased variance estimators corresponding to the proposed mean estimators are derived. Real-world datasets are utilized to demonstrate the application of these complex survey sampling methodologies, with results showing that the mean estimates derived using ranked set sampling are more accurate than those obtained via simple random sampling.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0324559"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324559","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate estimation of the finite population mean is a fundamental challenge in survey sampling, especially when dealing with large or complex populations. Traditional methods like simple random sampling may not always provide reliable or efficient estimates in such cases. Motivated by this, the current study explores complex sampling techniques to improve the precision and accuracy of mean estimators. Specifically, we employ two-stage and three-stage cluster sampling methods to develop unbiased estimators for the finite population mean. Building upon these, the next phase of the study formulates unbiased mean estimators using stratified two- and three-stage cluster sampling. To further enhance the precision of these estimators, a ranked-set sampling strategy is applied to the secondary and tertiary sampling stages. Additionally, unbiased variance estimators corresponding to the proposed mean estimators are derived. Real-world datasets are utilized to demonstrate the application of these complex survey sampling methodologies, with results showing that the mean estimates derived using ranked set sampling are more accurate than those obtained via simple random sampling.

复杂抽样调查中有限总体均值的估计。
在抽样调查中,对有限总体均值的准确估计是一个基本的挑战,特别是在处理大型或复杂的总体时。在这种情况下,像简单随机抽样这样的传统方法可能并不总是提供可靠或有效的估计。基于此,本研究探索了复杂的采样技术,以提高均值估计器的精度和准确性。具体来说,我们采用两阶段和三阶段聚类抽样方法来开发有限总体均值的无偏估计。在此基础上,研究的下一阶段使用分层两阶段和三阶段聚类抽样制定无偏均值估计。为了进一步提高估计器的精度,在二次和三次采样阶段采用了秩集采样策略。此外,还得到了与所提出的均值估计量相对应的无偏方差估计量。利用真实世界的数据集来演示这些复杂的调查抽样方法的应用,结果表明,使用排名集抽样获得的平均值估计比通过简单随机抽样获得的平均值估计更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信