BGM-YOLO: An accurate and efficient detector for detecting plant disease.

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-05-28 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0322750
Chenghai Yu, Junhao Xie, Fernandes Jean Adrian Tony
{"title":"BGM-YOLO: An accurate and efficient detector for detecting plant disease.","authors":"Chenghai Yu, Junhao Xie, Fernandes Jean Adrian Tony","doi":"10.1371/journal.pone.0322750","DOIUrl":null,"url":null,"abstract":"<p><p>Given the complexity of crop growth environments in nature, where leaf backgrounds often include soil, weeds, and other plants, along with variable lighting conditions, and considering the small size of leaf spots and the wide variety of crop diseases with significant scale differences, this paper proposes a new BGM-YOLO model structure aimed at improving accuracy and inference speed. First, the GSBottleneck module is utilized to enhance the C2f module of the YOLOv8n model, leading to the introduction of the GSC2f module, which reduces computational costs and increases inference efficiency. Next, the model incorporates a multiscale bitemporal fusion module (BFM) to increase the effectiveness and robustness of feature fusion across different levels. Finally, we developed a median-enhanced spatial and channel attention block (MECS) that combines both channel and spatial attention mechanisms, effectively improving the capture and fusion of small-scale features. The experimental results demonstrate that the BGM-YOLO model achieves a 3.9% improvement in the mean average precision (mAP) over the original model. In crop disease detection tasks, the BGM-YOLO model has higher detection accuracy and a lower false negative rate, confirming its practical value in complex application scenarios.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0322750"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0322750","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Given the complexity of crop growth environments in nature, where leaf backgrounds often include soil, weeds, and other plants, along with variable lighting conditions, and considering the small size of leaf spots and the wide variety of crop diseases with significant scale differences, this paper proposes a new BGM-YOLO model structure aimed at improving accuracy and inference speed. First, the GSBottleneck module is utilized to enhance the C2f module of the YOLOv8n model, leading to the introduction of the GSC2f module, which reduces computational costs and increases inference efficiency. Next, the model incorporates a multiscale bitemporal fusion module (BFM) to increase the effectiveness and robustness of feature fusion across different levels. Finally, we developed a median-enhanced spatial and channel attention block (MECS) that combines both channel and spatial attention mechanisms, effectively improving the capture and fusion of small-scale features. The experimental results demonstrate that the BGM-YOLO model achieves a 3.9% improvement in the mean average precision (mAP) over the original model. In crop disease detection tasks, the BGM-YOLO model has higher detection accuracy and a lower false negative rate, confirming its practical value in complex application scenarios.

Abstract Image

Abstract Image

Abstract Image

BGM-YOLO:一种准确、高效的植物病害检测仪器。
考虑到自然界作物生长环境的复杂性,叶片背景通常包括土壤、杂草等植物,光照条件多变,且叶斑面积小,作物病害种类多,且尺度差异显著,本文提出了一种新的BGM-YOLO模型结构,旨在提高模型的精度和推理速度。首先,利用GSBottleneck模块对YOLOv8n模型的C2f模块进行增强,引入GSC2f模块,降低了计算成本,提高了推理效率。其次,该模型引入多尺度双时间融合模块(BFM),提高了不同层次特征融合的有效性和鲁棒性;最后,我们开发了一种结合了通道和空间注意机制的中值增强空间和通道注意块(MECS),有效改善了小尺度特征的捕获和融合。实验结果表明,BGM-YOLO模型的平均精度比原模型提高了3.9%。在作物病害检测任务中,BGM-YOLO模型具有较高的检测准确率和较低的假阴性率,验证了其在复杂应用场景中的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信