{"title":"Recent advances in antibody optimization based on deep learning methods.","authors":"Ruofan Jin, Ruhong Zhou, Dong Zhang","doi":"10.1631/jzus.B2400387","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies currently comprise the predominant treatment modality for a variety of diseases; therefore, optimizing their properties rapidly and efficiently is an indispensable step in antibody-based drug development. Inspired by the great success of artificial intelligence-based algorithms, especially deep learning-based methods in the field of biology, various computational methods have been introduced into antibody optimization to reduce costs and increase the success rate of lead candidate generation and optimization. Herein, we briefly review recent progress in deep learning-based antibody optimization, focusing on the available datasets and algorithm input data types that are crucial for constructing appropriate deep learning models. Furthermore, we discuss the current challenges and potential solutions for the future development of general-purpose deep learning algorithms in antibody optimization.</p>","PeriodicalId":17797,"journal":{"name":"Journal of Zhejiang University SCIENCE B","volume":"26 5","pages":"409-420"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119181/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University SCIENCE B","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1631/jzus.B2400387","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibodies currently comprise the predominant treatment modality for a variety of diseases; therefore, optimizing their properties rapidly and efficiently is an indispensable step in antibody-based drug development. Inspired by the great success of artificial intelligence-based algorithms, especially deep learning-based methods in the field of biology, various computational methods have been introduced into antibody optimization to reduce costs and increase the success rate of lead candidate generation and optimization. Herein, we briefly review recent progress in deep learning-based antibody optimization, focusing on the available datasets and algorithm input data types that are crucial for constructing appropriate deep learning models. Furthermore, we discuss the current challenges and potential solutions for the future development of general-purpose deep learning algorithms in antibody optimization.
期刊介绍:
Journal of Zheijang University SCIENCE B - Biomedicine & Biotechnology is an international journal that aims to present the latest development and achievements in scientific research in China and abroad to the world’s scientific community.
JZUS-B covers research in Biomedicine and Biotechnology and Biochemistry and topics related to life science subjects, such as Plant and Animal Sciences, Environment and Resource etc.