{"title":"Pan-genome and haplotype map of cassava cultivars and wild ancestors provide insights into its adaptive evolution and domestication.","authors":"Zhiqiang Xia, Zhenglin Du, Xincheng Zhou, Sirong Jiang, Tingting Zhu, Le Wang, Fei Chen, Luiz Carvalho, Meiling Zou, Luis Augusto Becerra Lopez-Lavalle, Xiaofei Zhang, Liangye Xu, Zhenyu Wang, Meili Chen, Xin Guo, Shujuan Wang, Mengtao Li, Yuanchao Li, Haiyan Wang, Shisheng Liu, Yuting Bao, Long Zhao, Chenji Zhang, Jianjia Xiao, Fengguang Guo, Xu Shen, Haozheng Li, Cheng Lu, Fei Qiao, Hernan Ceballos, Huabing Yan, Xiaochun Qin, Ling Ma, Huaifang Zhang, Shuang He, Wenming Zhao, Yinglang Wan, Yinhua Chen, Dongyi Huang, Kaimian Li, Bin Liu, Ming Peng, Weixiong Zhang, Birger Lindberg Møller, Xin Chen, Ming-Cheng Luo, Jingfa Xiao, Wenquan Wang","doi":"10.1016/j.molp.2025.05.014","DOIUrl":null,"url":null,"abstract":"<p><p>Cassava is a highly resilient tropical crop that produces large, starchy storage roots and high biomass. However, how did cassava's remarkable environmental adaptability and key economic traits evolve from its wild species remain unclear. In this study, we obtained near complete telomere-to-telomere genome assemblies and their haplotype forms for the cultivar AM560, the wild ancestors FLA4047 and W14, constructed a graphic pan-genome of 30 representatives with a size of 1.15 Gb, and built a clarified evolutionary tree of 486 accessions. A comparison of structural variations and single-nucleotide variations between the ancestors and cultivated cassavas reveals predominant expansions and contractions of numbers of genes and gene families, which are mainly driven by transposons. Significant selective sweeping occurred in 122 footprints of genomes and affects 1,519 domesticated genes. We identify selective mutations in MeCSK and MeFNR2 that could promote photoreactions associated with MeNADP-ME in C<sub>4</sub> photosynthesis in modern cassava. Coevolution of retard floral primordia and initiation of storage roots may arise from MeCOL5 variants with altered bindings to MeFT1, MeFT2, and MeTFL2. Mutations in MeMATE1 and MeGTR occur in sweet cassava, and MeAHL19 has evolved to regulate the biosynthesis, transport, and endogenous remobilization of cyanogenic glucosides in cassava. These extensive genomic and gene resources provided here, along with the findings on the evolutionary mechanisms responsible for beneficial traits in modern cultivars, lay a strong foundation for future breeding improvements of cassava.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1047-1071"},"PeriodicalIF":17.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2025.05.014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cassava is a highly resilient tropical crop that produces large, starchy storage roots and high biomass. However, how did cassava's remarkable environmental adaptability and key economic traits evolve from its wild species remain unclear. In this study, we obtained near complete telomere-to-telomere genome assemblies and their haplotype forms for the cultivar AM560, the wild ancestors FLA4047 and W14, constructed a graphic pan-genome of 30 representatives with a size of 1.15 Gb, and built a clarified evolutionary tree of 486 accessions. A comparison of structural variations and single-nucleotide variations between the ancestors and cultivated cassavas reveals predominant expansions and contractions of numbers of genes and gene families, which are mainly driven by transposons. Significant selective sweeping occurred in 122 footprints of genomes and affects 1,519 domesticated genes. We identify selective mutations in MeCSK and MeFNR2 that could promote photoreactions associated with MeNADP-ME in C4 photosynthesis in modern cassava. Coevolution of retard floral primordia and initiation of storage roots may arise from MeCOL5 variants with altered bindings to MeFT1, MeFT2, and MeTFL2. Mutations in MeMATE1 and MeGTR occur in sweet cassava, and MeAHL19 has evolved to regulate the biosynthesis, transport, and endogenous remobilization of cyanogenic glucosides in cassava. These extensive genomic and gene resources provided here, along with the findings on the evolutionary mechanisms responsible for beneficial traits in modern cultivars, lay a strong foundation for future breeding improvements of cassava.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.