SAVANA: reliable analysis of somatic structural variants and copy number aberrations using long-read sequencing.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-07-01 Epub Date: 2025-05-28 DOI:10.1038/s41592-025-02708-0
Hillary Elrick, Carolin M Sauer, Jose Espejo Valle-Inclan, Katherine Trevers, Melanie Tanguy, Sonia Zumalave, Solange De Noon, Francesc Muyas, Rita Cascão, Angela Afonso, Alistair G Rust, Fernanda Amary, Roberto Tirabosco, Adam Giess, Timothy Freeman, Alona Sosinsky, Katherine Piculell, David T Miller, Claudia C Faria, Greg Elgar, Adrienne M Flanagan, Isidro Cortes-Ciriano
{"title":"SAVANA: reliable analysis of somatic structural variants and copy number aberrations using long-read sequencing.","authors":"Hillary Elrick, Carolin M Sauer, Jose Espejo Valle-Inclan, Katherine Trevers, Melanie Tanguy, Sonia Zumalave, Solange De Noon, Francesc Muyas, Rita Cascão, Angela Afonso, Alistair G Rust, Fernanda Amary, Roberto Tirabosco, Adam Giess, Timothy Freeman, Alona Sosinsky, Katherine Piculell, David T Miller, Claudia C Faria, Greg Elgar, Adrienne M Flanagan, Isidro Cortes-Ciriano","doi":"10.1038/s41592-025-02708-0","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate detection of somatic structural variants (SVs) and somatic copy number aberrations (SCNAs) is critical to study the mutational processes underpinning cancer evolution. Here we describe SAVANA, an algorithm designed to detect somatic SVs and SCNAs at single-haplotype resolution and estimate tumor purity and ploidy using long-read sequencing data with or without a germline control sample. We also establish best practices for benchmarking SV detection algorithms across the entire genome in a data-driven manner using replication and read-backed phasing analysis. Through the analysis of matched Illumina and nanopore whole-genome sequencing data for 99 human tumor-normal pairs, we show that SAVANA has significantly higher sensitivity and 13- and 82-times-higher specificity than the second and third-best performing algorithms. Moreover, SVs reported by SAVANA are highly consistent with those detected using short-read sequencing. In summary, SAVANA enables the application of long-read sequencing to detect SVs and SCNAs reliably.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1436-1446"},"PeriodicalIF":36.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02708-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate detection of somatic structural variants (SVs) and somatic copy number aberrations (SCNAs) is critical to study the mutational processes underpinning cancer evolution. Here we describe SAVANA, an algorithm designed to detect somatic SVs and SCNAs at single-haplotype resolution and estimate tumor purity and ploidy using long-read sequencing data with or without a germline control sample. We also establish best practices for benchmarking SV detection algorithms across the entire genome in a data-driven manner using replication and read-backed phasing analysis. Through the analysis of matched Illumina and nanopore whole-genome sequencing data for 99 human tumor-normal pairs, we show that SAVANA has significantly higher sensitivity and 13- and 82-times-higher specificity than the second and third-best performing algorithms. Moreover, SVs reported by SAVANA are highly consistent with those detected using short-read sequencing. In summary, SAVANA enables the application of long-read sequencing to detect SVs and SCNAs reliably.

SAVANA:利用长读测序可靠地分析体细胞结构变异和拷贝数畸变。
准确检测体细胞结构变异(SVs)和体细胞拷贝数畸变(SCNAs)对于研究支撑癌症进化的突变过程至关重要。在这里,我们描述了SAVANA算法,该算法旨在以单倍型分辨率检测体细胞sv和scna,并使用有或没有种系对照样本的长读测序数据估计肿瘤纯度和倍性。我们还建立了最佳实践,以数据驱动的方式使用复制和读回相位分析在整个基因组中对SV检测算法进行基准测试。通过对99对人类肿瘤-正常配对的Illumina和纳米孔全基因组测序数据的分析,我们发现SAVANA比第二和第三名的算法具有更高的灵敏度和13倍和82倍的特异性。此外,SAVANA报告的sv与短读测序检测到的sv高度一致。总之,SAVANA使长读测序能够可靠地检测SVs和scna。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信