Proteomic and metabolomic dissection of the BRAF V600E mutation-induced cellular state transition in lung epithelial cells†

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular omics Pub Date : 2025-04-23 DOI:10.1039/D4MO00249K
Fengting Liu, Fan Yang, Hailin Xiong, Jingnan Huang, Zhenhui Huang, Jingying Song, Xinyi Liu, Hongchao Zhou, Jing Xu, Jimin Yuan, Lin Jia and Lingyun Dai
{"title":"Proteomic and metabolomic dissection of the BRAF V600E mutation-induced cellular state transition in lung epithelial cells†","authors":"Fengting Liu, Fan Yang, Hailin Xiong, Jingnan Huang, Zhenhui Huang, Jingying Song, Xinyi Liu, Hongchao Zhou, Jing Xu, Jimin Yuan, Lin Jia and Lingyun Dai","doi":"10.1039/D4MO00249K","DOIUrl":null,"url":null,"abstract":"<p >Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer, and 4% of NSCLC patients are reported to harbor mutations in <em>BRAF</em>, which encodes a serine/threonine kinase capable of activating the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. However, the role and effects of <em>BRAF</em> mutation in NSCLC or lung lineage cells are not fully understood. To mimic the naturally occurring <em>BRAF</em> V600E mutation in lung cancer, a <em>BRAF</em> V600E knock-in BEAS-2B cell model was established using CRISPR/Cas9. Although the <em>BRAF</em> V600E mutation alone was not sufficient to drive lung carcinogenesis, it induced remarkable changes in cellular migration capacity and tumorigenic potential. Proteomics analysis revealed significant changes in the proteins involved in the biological processes including epithelial–mesenchymal transition (EMT), extracellular matrix (ECM)–receptor interaction, cell adhesion, focal adhesion, and cell metabolism upon the <em>BRAF</em> V600E mutation. Untargeted metabolomics experiments revealed that amino acid metabolism, especially glycine, serine and threonine metabolism, was significantly modulated in <em>BRAF</em> V600E knock-in cells. In summary, this study provides a new isogenic cell model that allows us to systematically dissect the underlying molecular events involved in the transition of cellular states upon the introduction of the <em>BRAF</em> V600E mutation.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 5","pages":" 422-432"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d4mo00249k","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer, and 4% of NSCLC patients are reported to harbor mutations in BRAF, which encodes a serine/threonine kinase capable of activating the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. However, the role and effects of BRAF mutation in NSCLC or lung lineage cells are not fully understood. To mimic the naturally occurring BRAF V600E mutation in lung cancer, a BRAF V600E knock-in BEAS-2B cell model was established using CRISPR/Cas9. Although the BRAF V600E mutation alone was not sufficient to drive lung carcinogenesis, it induced remarkable changes in cellular migration capacity and tumorigenic potential. Proteomics analysis revealed significant changes in the proteins involved in the biological processes including epithelial–mesenchymal transition (EMT), extracellular matrix (ECM)–receptor interaction, cell adhesion, focal adhesion, and cell metabolism upon the BRAF V600E mutation. Untargeted metabolomics experiments revealed that amino acid metabolism, especially glycine, serine and threonine metabolism, was significantly modulated in BRAF V600E knock-in cells. In summary, this study provides a new isogenic cell model that allows us to systematically dissect the underlying molecular events involved in the transition of cellular states upon the introduction of the BRAF V600E mutation.

Abstract Image

BRAF V600E突变诱导肺上皮细胞细胞状态转变的蛋白质组学和代谢组学解剖
非小细胞肺癌(NSCLC)是最常见的肺癌亚型,据报道,4%的NSCLC患者携带BRAF突变,BRAF编码一种丝氨酸/苏氨酸激酶,能够激活丝裂原活化蛋白激酶(MAPK)/细胞外信号调节激酶(ERK)途径。然而,BRAF突变在非小细胞肺癌或肺系细胞中的作用和影响尚不完全清楚。为了模拟肺癌中自然发生的BRAF V600E突变,我们利用CRISPR/Cas9技术建立了BRAF V600E敲入BEAS-2B细胞模型。虽然BRAF V600E突变本身不足以驱动肺癌发生,但它诱导了细胞迁移能力和致瘤潜能的显著变化。蛋白质组学分析显示,BRAF V600E突变后,参与上皮-间质转化(EMT)、细胞外基质(ECM)-受体相互作用、细胞粘附、局灶粘附和细胞代谢等生物学过程的蛋白质发生了显著变化。非靶向代谢组学实验显示,BRAF V600E敲入细胞的氨基酸代谢,尤其是甘氨酸、丝氨酸和苏氨酸的代谢显著调节。总之,这项研究提供了一个新的等基因细胞模型,使我们能够系统地剖析引入BRAF V600E突变后细胞状态转变所涉及的潜在分子事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular omics
Molecular omics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍: Molecular Omics publishes high-quality research from across the -omics sciences. Topics include, but are not limited to: -omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance -omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets -omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques -studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field. Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits. Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信