Oyster shell powder reinforced chitosan-poly(vinyl alcohol) freeze-dried composite sponge for on-site hemorrhage control.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Pranabesh Kumar Sasmal, Sujankrishna Samanta, Shalini Dasgupta, Samit Kumar Nandi, Abhijit Chanda, Pallab Datta
{"title":"Oyster shell powder reinforced chitosan-poly(vinyl alcohol) freeze-dried composite sponge for on-site hemorrhage control.","authors":"Pranabesh Kumar Sasmal, Sujankrishna Samanta, Shalini Dasgupta, Samit Kumar Nandi, Abhijit Chanda, Pallab Datta","doi":"10.1177/08853282251347348","DOIUrl":null,"url":null,"abstract":"<p><p>A composite hemostatic sponge consisting of chitosan (CS) with oyster shell powder (OSP) has been developed as a potentially sustainable composite material for controlling hemorrhage at the injury site. The system is designed assuming that Ca<sup>+</sup> released by OSP will accelerate the effect of chitosan at damage sites, enhancing the overall hemostatic efficacy. The sponge was thoroughly characterized using FTIR, SEM, and EDX analysis. In vitro, blood clotting assays such as clotting time (CT) [188 ± 4 s], prothrombin time (PT) [36 ± 1 s], activated partial thromboplastin time (aPTT) [51 ± 2 s], and plasma recalcification time (PRT) [58 ± 3 s] demonstrated that the inclusion of CaCO<sub>3</sub> significantly improved clot formation, with the CS-OSP sponge outperforming control sponges without OSP. RT-PCR analysis of vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor (PDGF), and interleukin growth factor 1 (IGF-1) on fibroblast cell lines evidenced the wound healing-promoting activity of OSP-reinforced CS sponges. This was further supported by in vivo studies using a rabbit femoral artery injury model, where the CaCO<sub>3</sub>-enhanced sponge achieved superior hemostasis and reduced blood loss more effectively than the control sponges without CaCO<sub>3</sub>. These findings suggest that the oyster shell-derived CaCO<sub>3</sub> enhances the hemostatic activity of chitosan-based sponges, providing a promising candidate for rapid hemorrhage control in clinical settings, particularly in scenarios involving both oozing and pressurized bleeding.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251347348"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251347348","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A composite hemostatic sponge consisting of chitosan (CS) with oyster shell powder (OSP) has been developed as a potentially sustainable composite material for controlling hemorrhage at the injury site. The system is designed assuming that Ca+ released by OSP will accelerate the effect of chitosan at damage sites, enhancing the overall hemostatic efficacy. The sponge was thoroughly characterized using FTIR, SEM, and EDX analysis. In vitro, blood clotting assays such as clotting time (CT) [188 ± 4 s], prothrombin time (PT) [36 ± 1 s], activated partial thromboplastin time (aPTT) [51 ± 2 s], and plasma recalcification time (PRT) [58 ± 3 s] demonstrated that the inclusion of CaCO3 significantly improved clot formation, with the CS-OSP sponge outperforming control sponges without OSP. RT-PCR analysis of vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor (PDGF), and interleukin growth factor 1 (IGF-1) on fibroblast cell lines evidenced the wound healing-promoting activity of OSP-reinforced CS sponges. This was further supported by in vivo studies using a rabbit femoral artery injury model, where the CaCO3-enhanced sponge achieved superior hemostasis and reduced blood loss more effectively than the control sponges without CaCO3. These findings suggest that the oyster shell-derived CaCO3 enhances the hemostatic activity of chitosan-based sponges, providing a promising candidate for rapid hemorrhage control in clinical settings, particularly in scenarios involving both oozing and pressurized bleeding.

牡蛎壳粉增强壳聚糖-聚乙烯醇冻干复合海绵用于现场止血。
壳聚糖(CS)和牡蛎壳粉(OSP)复合止血海绵是一种具有潜在可持续性的复合材料,可用于控制损伤部位出血。该系统的设计假设OSP释放的Ca+会加速壳聚糖在损伤部位的作用,提高整体止血效果。利用FTIR, SEM和EDX分析对海绵进行了全面的表征。体外凝血试验,如凝血时间(CT)[188±4 s]、凝血酶原时间(PT)[36±1 s]、活化部分凝血活素时间(aPTT)[51±2 s]和血浆再钙化时间(PRT)[58±3 s]表明,CaCO3包埋显著改善了血栓形成,CS-OSP海绵优于不含OSP的对照海绵。RT-PCR检测成纤维细胞系血管内皮生长因子A (VEGF-A)、血小板源性生长因子(PDGF)和白细胞介素生长因子1 (IGF-1)水平,证实了sp增强CS海绵对伤口愈合的促进作用。使用兔股动脉损伤模型的体内研究进一步支持了这一点,其中CaCO3增强海绵比没有CaCO3的对照海绵更有效地止血和减少失血。这些发现表明,牡蛎壳衍生的CaCO3增强了壳聚糖海绵的止血活性,为临床环境中的快速出血控制提供了一个有希望的候选者,特别是在涉及渗出和加压出血的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信