T Barba, M Oberbarnscheidt, G Franck, C Gao, S This, M Rabeyrin, C Roufosse, L Moran, A Koenig, V Mathias, C Saison, V Dubois, N Pallet, D Anglicheau, B Lamarthée, A Hertig, E Morelon, A Hot, H Paidassi, T Defrance, A Nicoletti, J P Duong-Van-Huyen, Y Xu-Dubois, F G Lakkis, O Thaunat
{"title":"Chemotaxis overrides killing response in alloreactive cytotoxic T-cells providing vascular immune privilege during cellular rejection.","authors":"T Barba, M Oberbarnscheidt, G Franck, C Gao, S This, M Rabeyrin, C Roufosse, L Moran, A Koenig, V Mathias, C Saison, V Dubois, N Pallet, D Anglicheau, B Lamarthée, A Hertig, E Morelon, A Hot, H Paidassi, T Defrance, A Nicoletti, J P Duong-Van-Huyen, Y Xu-Dubois, F G Lakkis, O Thaunat","doi":"10.1172/JCI155191","DOIUrl":null,"url":null,"abstract":"<p><p>Graft endothelial cells (ECs) express donor alloantigens and encounter cytotoxic T lymphocytes (CTLs) but are generally spared during T cell-mediated rejection (TCMR), which predominantly affects epithelial structures. The mechanisms underlying this vascular immune privilege are unclear. Transcriptomic analyses and endothelial-mesenchymal transition assessments confirmed that the graft endothelium is preserved during TCMR. Co-culture experiments revealed that endothelial and epithelial cells are equally susceptible to CTL-mediated lysis, ruling out cell-intrinsic protection. Intravital microscopy of murine kidney grafts and single-cell RNA sequencing of human renal allografts demonstrated that CTL interactions with ECs are transient compared to epithelial cells. This disparity is mediated by a chemotactic gradient produced by graft stromal cells, guiding CTLs away from ECs toward epithelial targets. In vitro, chemotaxis overrode TCR-induced cytotoxicity, preventing endothelial damage. Finally, analysis of TCMR biopsies revealed that disruption of the chemotactic gradient correlates with endothelialitis lesions, linking its loss to vascular damage. These findings challenge the traditional view of cell-intrinsic immune privilege, proposing a cell-extrinsic mechanism where chemotaxis preserves graft vasculature during TCMR. This mechanism may have implications beyond transplantation, highlighting its role in maintaining vascular integrity across pathological conditions.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI155191","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Graft endothelial cells (ECs) express donor alloantigens and encounter cytotoxic T lymphocytes (CTLs) but are generally spared during T cell-mediated rejection (TCMR), which predominantly affects epithelial structures. The mechanisms underlying this vascular immune privilege are unclear. Transcriptomic analyses and endothelial-mesenchymal transition assessments confirmed that the graft endothelium is preserved during TCMR. Co-culture experiments revealed that endothelial and epithelial cells are equally susceptible to CTL-mediated lysis, ruling out cell-intrinsic protection. Intravital microscopy of murine kidney grafts and single-cell RNA sequencing of human renal allografts demonstrated that CTL interactions with ECs are transient compared to epithelial cells. This disparity is mediated by a chemotactic gradient produced by graft stromal cells, guiding CTLs away from ECs toward epithelial targets. In vitro, chemotaxis overrode TCR-induced cytotoxicity, preventing endothelial damage. Finally, analysis of TCMR biopsies revealed that disruption of the chemotactic gradient correlates with endothelialitis lesions, linking its loss to vascular damage. These findings challenge the traditional view of cell-intrinsic immune privilege, proposing a cell-extrinsic mechanism where chemotaxis preserves graft vasculature during TCMR. This mechanism may have implications beyond transplantation, highlighting its role in maintaining vascular integrity across pathological conditions.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.