Sheikh Mansoor, Shahzad Iqbal, Simona M Popescu, Song Lim Kim, Yong Suk Chung, Jeong-Ho Baek
{"title":"Integration of smart sensors and IOT in precision agriculture: trends, challenges and future prospectives.","authors":"Sheikh Mansoor, Shahzad Iqbal, Simona M Popescu, Song Lim Kim, Yong Suk Chung, Jeong-Ho Baek","doi":"10.3389/fpls.2025.1587869","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional farming methods, effective for generations, struggle to meet rising global food demands due to limitations in productivity, efficiency, and sustainability amid climate change and resource scarcity. Precision agriculture presents a viable solution by optimizing resource use, enhancing efficiency, and fostering sustainable practices through data-driven decision-making supported by advanced sensors and Internet of Things (IoT) technologies. This review examines various smart sensors used in precision agriculture, including soil sensors for moisture, pH, and plant stress sensors etc. These sensors deliver real-time data that enables informed decision-making, facilitating targeted interventions like optimized irrigation, fertilization, and pest management. Additionally, the review highlights the transformative role of IoT in precision agriculture. The integration of sensor networks with IoT platforms allows for remote monitoring, data analysis via artificial intelligence (AI) and machine learning (ML), and automated control systems, enabling predictive analytics to address challenges such as disease outbreaks and yield forecasting. However, while precision agriculture offers significant benefits, it faces challenges including high initial investment costs, complexities in data management, needs for technical expertise, data security and privacy concerns, and issues with connectivity in remote agricultural areas. Addressing these technological and economic challenges is essential for maximizing the potential of precision agriculture in enhancing global food security and sustainability. Therefore, in this review we explore the latest trends, challenges, and opportunities associated with IoT enabled smart sensors in precision agriculture.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1587869"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1587869","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional farming methods, effective for generations, struggle to meet rising global food demands due to limitations in productivity, efficiency, and sustainability amid climate change and resource scarcity. Precision agriculture presents a viable solution by optimizing resource use, enhancing efficiency, and fostering sustainable practices through data-driven decision-making supported by advanced sensors and Internet of Things (IoT) technologies. This review examines various smart sensors used in precision agriculture, including soil sensors for moisture, pH, and plant stress sensors etc. These sensors deliver real-time data that enables informed decision-making, facilitating targeted interventions like optimized irrigation, fertilization, and pest management. Additionally, the review highlights the transformative role of IoT in precision agriculture. The integration of sensor networks with IoT platforms allows for remote monitoring, data analysis via artificial intelligence (AI) and machine learning (ML), and automated control systems, enabling predictive analytics to address challenges such as disease outbreaks and yield forecasting. However, while precision agriculture offers significant benefits, it faces challenges including high initial investment costs, complexities in data management, needs for technical expertise, data security and privacy concerns, and issues with connectivity in remote agricultural areas. Addressing these technological and economic challenges is essential for maximizing the potential of precision agriculture in enhancing global food security and sustainability. Therefore, in this review we explore the latest trends, challenges, and opportunities associated with IoT enabled smart sensors in precision agriculture.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.