{"title":"Reducing calibration efforts of SSVEP-BCIs by shallow fine-tuning-based transfer learning.","authors":"Wenlong Ding, Aiping Liu, Xingui Chen, Chengjuan Xie, Kai Wang, Xun Chen","doi":"10.1007/s11571-025-10264-8","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of transfer learning (TL), particularly through pre-training and fine-tuning, in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has substantially reduced the calibration efforts. However, commonly employed fine-tuning approaches, including end-to-end fine-tuning and last-layer fine-tuning, require data from target subjects that encompass all categories (stimuli), resulting in a time-consuming data collection process, especially in systems with numerous categories. To address this challenge, this study introduces a straightforward yet effective ShallOw Fine-Tuning (SOFT) method to substantially reduce the number of calibration categories needed for model fine-tuning, thereby further mitigating the calibration efforts for target subjects. Specifically, SOFT involves freezing the parameters of the deeper layers while updating those of the shallow layers during fine-tuning. Freezing the parameters of deeper layers preserves the model's ability to recognize semantic and high-level features across all categories, as established during pre-training. Moreover, data from different categories exhibit similar individual-specific low-level features in SSVEP-BCIs. Consequently, updating the parameters of shallow layers-responsible for processing low-level features-with data solely from partial categories enables the fine-tuned model to efficiently capture the individual-related features shared by all categories. The effectiveness of SOFT is validated using two public datasets. Comparative analysis with commonly used end-to-end and last-layer fine-tuning methods reveals that SOFT achieves higher classification accuracy while requiring fewer calibration categories. The proposed SOFT method further decreases the calibration efforts for target subjects by reducing the calibration category requirements, thereby improving the feasibility of SSVEP-BCIs for real-world applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"81"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10264-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of transfer learning (TL), particularly through pre-training and fine-tuning, in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) has substantially reduced the calibration efforts. However, commonly employed fine-tuning approaches, including end-to-end fine-tuning and last-layer fine-tuning, require data from target subjects that encompass all categories (stimuli), resulting in a time-consuming data collection process, especially in systems with numerous categories. To address this challenge, this study introduces a straightforward yet effective ShallOw Fine-Tuning (SOFT) method to substantially reduce the number of calibration categories needed for model fine-tuning, thereby further mitigating the calibration efforts for target subjects. Specifically, SOFT involves freezing the parameters of the deeper layers while updating those of the shallow layers during fine-tuning. Freezing the parameters of deeper layers preserves the model's ability to recognize semantic and high-level features across all categories, as established during pre-training. Moreover, data from different categories exhibit similar individual-specific low-level features in SSVEP-BCIs. Consequently, updating the parameters of shallow layers-responsible for processing low-level features-with data solely from partial categories enables the fine-tuned model to efficiently capture the individual-related features shared by all categories. The effectiveness of SOFT is validated using two public datasets. Comparative analysis with commonly used end-to-end and last-layer fine-tuning methods reveals that SOFT achieves higher classification accuracy while requiring fewer calibration categories. The proposed SOFT method further decreases the calibration efforts for target subjects by reducing the calibration category requirements, thereby improving the feasibility of SSVEP-BCIs for real-world applications.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.