{"title":"Intrabone marrow diversity of endothelial cells and its impact on hematopoietic stem cell development and maintenance.","authors":"Shota Shimizu, Yoshiaki Kubota","doi":"10.1016/j.exphem.2025.104817","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to supplying oxygen and nutrients, blood vessels secrete paracrine molecules known as angiocrine factors to promote tissue homeostasis and repair. The bone marrow (BM) vasculature in long bones has differing properties between the diaphysis, metaphysis, and epiphysis in terms of its morphology, plasticity, perivascular cellular components, and angiocrine profiles. Blood vessel formation is linked with bone formation through paracrine interactions between endothelial cells (ECs) and osteolineage cells, so-called angiogenic-osteogenic coupling. ECs also play essential roles in the maintenance of hematopoietic stem cells (HSCs) by forming vascular niches together with perivascular stromal cells. Recent studies highlighted the heterogeneity of vascular niches at different bone regions, suggesting that HSCs are regulated by locally distinct mechanisms. Here, we provided an overview of the BM vasculature and discussed how the heterogeneous vasculature contributes to bone formation and HSC maintenance.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104817"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2025.104817","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In addition to supplying oxygen and nutrients, blood vessels secrete paracrine molecules known as angiocrine factors to promote tissue homeostasis and repair. The bone marrow (BM) vasculature in long bones has differing properties between the diaphysis, metaphysis, and epiphysis in terms of its morphology, plasticity, perivascular cellular components, and angiocrine profiles. Blood vessel formation is linked with bone formation through paracrine interactions between endothelial cells (ECs) and osteolineage cells, so-called angiogenic-osteogenic coupling. ECs also play essential roles in the maintenance of hematopoietic stem cells (HSCs) by forming vascular niches together with perivascular stromal cells. Recent studies highlighted the heterogeneity of vascular niches at different bone regions, suggesting that HSCs are regulated by locally distinct mechanisms. Here, we provided an overview of the BM vasculature and discussed how the heterogeneous vasculature contributes to bone formation and HSC maintenance.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.