{"title":"2,4-Epibrassinolide Alleviates cd Toxicity in Vigna angularis by Boosting Antioxidant Defense, Detoxification, and Genome Stability.","authors":"Zihan Tang, Hetong Wang, Suyu Chen, Xianpeng Wang, Jialin Hou, Yuxian Zhang, Qiang Zhao","doi":"10.1111/ppl.70288","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium is one of the most toxic heavy metal pollutants in the world, seriously affecting crop growth and human health. 2,4-Epibrassinolide (BRs) has been proven to promote plant growth, enhance abiotic stress resistance and improve crop quality and yield. In this study, adzuki bean (V. angularis) cultivar 'Zhen Zhuhong' was grown hydroponically in 1/2 Hoagland nutrient solution with 0, 1, and 2 mg L<sup>-1</sup> cadmium chloride (CdCl<sub>2</sub>), and then treated with 0 or 1 μM BR at the V1 stage. Compared with Cd stress, ascorbic acid content, peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC1.15.1.1) activities in adzuki Cd-stressed bean roots under BR treatment were increased by 30.63%, 41.83%, 51.49%, and 29.48%, which alleviated intracellular ROS accumulation and DNA oxidative damage. In addition, proline content and free amino acid content in BR-treated adzuki bean seedling roots under Cd stress increased by 30.37% and 35.96%, which was conducive to maintaining cell membrane homeostasis and improving root activity. RNA-seq and real-time quantitative reverse transcription PCR analyses revealed that BR treatment regulates the absorption, transport, and accumulation processes of Cd<sup>2+</sup> in adzuki bean seedling roots, reducing the nonspecific accumulation of Cd<sup>2+</sup> within cells and alleviating the toxic effects of Cd on root cells. BR treatment enhances the DNA damage repair in the roots of adzuki beans under Cd stress by reducing the extent of DNA oxidative damage, and effectively promoting the transition of cells from the G1 phase to the S phase.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 3","pages":"e70288"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70288","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium is one of the most toxic heavy metal pollutants in the world, seriously affecting crop growth and human health. 2,4-Epibrassinolide (BRs) has been proven to promote plant growth, enhance abiotic stress resistance and improve crop quality and yield. In this study, adzuki bean (V. angularis) cultivar 'Zhen Zhuhong' was grown hydroponically in 1/2 Hoagland nutrient solution with 0, 1, and 2 mg L-1 cadmium chloride (CdCl2), and then treated with 0 or 1 μM BR at the V1 stage. Compared with Cd stress, ascorbic acid content, peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6) and superoxide dismutase (SOD, EC1.15.1.1) activities in adzuki Cd-stressed bean roots under BR treatment were increased by 30.63%, 41.83%, 51.49%, and 29.48%, which alleviated intracellular ROS accumulation and DNA oxidative damage. In addition, proline content and free amino acid content in BR-treated adzuki bean seedling roots under Cd stress increased by 30.37% and 35.96%, which was conducive to maintaining cell membrane homeostasis and improving root activity. RNA-seq and real-time quantitative reverse transcription PCR analyses revealed that BR treatment regulates the absorption, transport, and accumulation processes of Cd2+ in adzuki bean seedling roots, reducing the nonspecific accumulation of Cd2+ within cells and alleviating the toxic effects of Cd on root cells. BR treatment enhances the DNA damage repair in the roots of adzuki beans under Cd stress by reducing the extent of DNA oxidative damage, and effectively promoting the transition of cells from the G1 phase to the S phase.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.