Ophthalmic formulation of methotrexate: a strategy of using the self-assembled LacAC4A nanoparticles for non-invasive drug delivery to the ocular posterior segment.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-05-29 DOI:10.1080/10717544.2025.2509962
Xiao-Yun Hou, Xiao-Ling Zhang, An-Kang Ying, Yu-Xin Yue, Tao Yang, Dong-Sheng Guo, Zhi-Qing Li
{"title":"Ophthalmic formulation of methotrexate: a strategy of using the self-assembled LacAC4A nanoparticles for non-invasive drug delivery to the ocular posterior segment.","authors":"Xiao-Yun Hou, Xiao-Ling Zhang, An-Kang Ying, Yu-Xin Yue, Tao Yang, Dong-Sheng Guo, Zhi-Qing Li","doi":"10.1080/10717544.2025.2509962","DOIUrl":null,"url":null,"abstract":"<p><p>Drug delivery to ocular posterior segment remains difficult due to the challenges imposed by dynamic and static ocular barriers, lesion point targeting, and off-target effect. In this study, a novel approach is demonstrated for non-invasive drug delivery to the ocular posterior segments using lactose-modified azocalix[4] arene (LacAC4A) as a supramolecular ocular drug delivery platform. LacAC4A contains azo groups and is covalently modified by lactose groups, which confers active targeting to the retina, and induces a hypoxic response. The immunomodulator methotrexate (MTX), which is commonly used in ophthalmology to treat immune system diseases such as uveitis, was also selected as a guest to prepare MTX@LacAC4A. The prepared LacAC4A and MTX@LacAC4A systems were characterized, then the internalization mechanisms and hypoxia response abilities were determined through flow cytometry and fluorescence imaging, respectively. Besides, the delivery route and efficiency were verified, and the safety profile of MTX@LacAC4A was evaluated in multiple dimensions. Importantly, it was found that the prepared MTX@LacAC4A exhibits good biocompatibility, can effectively reach the posterior segment, and demonstrates potential ophthalmic applications. These findings lay the grounds for the future development of non-invasive ocular posterior segment disease treatments based on the advanced use of LacAC4A as a drug delivery platform.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2509962"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123953/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2509962","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug delivery to ocular posterior segment remains difficult due to the challenges imposed by dynamic and static ocular barriers, lesion point targeting, and off-target effect. In this study, a novel approach is demonstrated for non-invasive drug delivery to the ocular posterior segments using lactose-modified azocalix[4] arene (LacAC4A) as a supramolecular ocular drug delivery platform. LacAC4A contains azo groups and is covalently modified by lactose groups, which confers active targeting to the retina, and induces a hypoxic response. The immunomodulator methotrexate (MTX), which is commonly used in ophthalmology to treat immune system diseases such as uveitis, was also selected as a guest to prepare MTX@LacAC4A. The prepared LacAC4A and MTX@LacAC4A systems were characterized, then the internalization mechanisms and hypoxia response abilities were determined through flow cytometry and fluorescence imaging, respectively. Besides, the delivery route and efficiency were verified, and the safety profile of MTX@LacAC4A was evaluated in multiple dimensions. Importantly, it was found that the prepared MTX@LacAC4A exhibits good biocompatibility, can effectively reach the posterior segment, and demonstrates potential ophthalmic applications. These findings lay the grounds for the future development of non-invasive ocular posterior segment disease treatments based on the advanced use of LacAC4A as a drug delivery platform.

甲氨蝶呤眼科配方:一种利用自组装LacAC4A纳米颗粒进行眼后段非侵入性给药的策略。
由于动态和静态眼屏障、病灶点靶向和脱靶效应的挑战,药物给药仍然是困难的。本研究展示了一种利用乳糖修饰偶氮杂环[4]芳烃(LacAC4A)作为超分子眼部给药平台的无创眼部后节给药新方法。LacAC4A含有偶氮基团,并被乳糖基团共价修饰,这赋予视网膜主动靶向,并诱导缺氧反应。在眼科中用于治疗葡萄膜炎等免疫系统疾病的免疫调节剂甲氨蝶呤(MTX)也被选定为制作MTX@LacAC4A的嘉宾。对制备的LacAC4A和MTX@LacAC4A体系进行表征,并分别通过流式细胞术和荧光成像检测其内化机制和缺氧反应能力。验证了配送路线和配送效率,多维度评价了MTX@LacAC4A的安全性。重要的是,我们发现制备的MTX@LacAC4A具有良好的生物相容性,可以有效到达后段,具有潜在的眼科应用前景。这些发现为未来发展基于LacAC4A作为药物传递平台的无创眼后段疾病治疗奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信