A. Sumithra , P.M. Joe Prathap , A. Karthikeyan , S. Dhanasekaran
{"title":"Improving brain tumor diagnosis: A self-calibrated 1D residual network with random forest integration","authors":"A. Sumithra , P.M. Joe Prathap , A. Karthikeyan , S. Dhanasekaran","doi":"10.1016/j.brainres.2025.149704","DOIUrl":null,"url":null,"abstract":"<div><div>Medical specialists need to perform precise MRI analysis for accurate diagnosis of brain tumors. Current research has developed multiple artificial intelligence (AI) techniques for the process automation of brain tumor identification. However, existing approaches often depend on singular datasets, limiting their generalization capabilities across diverse clinical scenarios. The research introduces SCR-1DResNet as a new diagnostic tool for brain tumor detection that incorporates self-calibrated Random Forest along with one-dimensional residual networks. The research starts with MRI image acquisition from multiple Kaggle datasets then proceeds through stepwise processing that eliminates noise, enhances images, and performs resizing and normalization and conducts skull stripping operations. After data collection the WaveSegNet mode l extracts important attributes from tumors at multiple scales. Components of Random Forest classifier together with One-Dimensional Residual Network form the SCR-1DResNet model via self-calibration optimization to improve prediction reliability. Tests show the proposed system produces classification precision of 98.50% accompanied by accuracy of 98.80% and recall reaching 97.80% respectively. The SCR-1DResNet model demonstrates superior diagnostic capability and enhanced performance speed which shows strong prospects towards clinical decision support systems and improved neurological and oncological patient treatments.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1862 ","pages":"Article 149704"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000689932500263X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Medical specialists need to perform precise MRI analysis for accurate diagnosis of brain tumors. Current research has developed multiple artificial intelligence (AI) techniques for the process automation of brain tumor identification. However, existing approaches often depend on singular datasets, limiting their generalization capabilities across diverse clinical scenarios. The research introduces SCR-1DResNet as a new diagnostic tool for brain tumor detection that incorporates self-calibrated Random Forest along with one-dimensional residual networks. The research starts with MRI image acquisition from multiple Kaggle datasets then proceeds through stepwise processing that eliminates noise, enhances images, and performs resizing and normalization and conducts skull stripping operations. After data collection the WaveSegNet mode l extracts important attributes from tumors at multiple scales. Components of Random Forest classifier together with One-Dimensional Residual Network form the SCR-1DResNet model via self-calibration optimization to improve prediction reliability. Tests show the proposed system produces classification precision of 98.50% accompanied by accuracy of 98.80% and recall reaching 97.80% respectively. The SCR-1DResNet model demonstrates superior diagnostic capability and enhanced performance speed which shows strong prospects towards clinical decision support systems and improved neurological and oncological patient treatments.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.