Teissir Ben Ammar, Naji Kharouf, Dominique Vautier, Housseinou Ba, Nivedita Sudheer, Philippe Lavalle, Vincent Ball
{"title":"Colloidal few layered graphene-tannic acid preserves the biocompatibility of periodontal ligament cells.","authors":"Teissir Ben Ammar, Naji Kharouf, Dominique Vautier, Housseinou Ba, Nivedita Sudheer, Philippe Lavalle, Vincent Ball","doi":"10.3762/bjnano.16.51","DOIUrl":null,"url":null,"abstract":"<p><p>Dental diseases pose a global health concern. In addition to medication and care, the use of biocompatible and even bioactive dental materials can contribute to global oral health. Among such materials, nanomaterials begin to be used. In this context, the incorporation of graphene-based materials into dental biomaterials could offer advantages such as increased mechanical strength. Nevertheless, biocompatibility issues still hinder their adoption. In this study, a biocomposite of few-layered graphene and tannic acid (FLG-TA) was synthesized through a straightforward, bio-based methodology. Physicochemical characterizations elucidated the structural and morphological attributes of the biocomposite. By incorporating antioxidant TA molecules onto the FLG surface, the biocomposite dynamically mitigated reactive oxygen species, demonstrating no cytotoxicity to periodontal ligament cells up to 200 µg·mL<sup>-1</sup> while promoting cellular adhesion and maintaining chromatin integrity. Overall, because of its favorable biocompatibility FLG-TA holds promise as a novel biomaterial for dental applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"664-677"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.51","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dental diseases pose a global health concern. In addition to medication and care, the use of biocompatible and even bioactive dental materials can contribute to global oral health. Among such materials, nanomaterials begin to be used. In this context, the incorporation of graphene-based materials into dental biomaterials could offer advantages such as increased mechanical strength. Nevertheless, biocompatibility issues still hinder their adoption. In this study, a biocomposite of few-layered graphene and tannic acid (FLG-TA) was synthesized through a straightforward, bio-based methodology. Physicochemical characterizations elucidated the structural and morphological attributes of the biocomposite. By incorporating antioxidant TA molecules onto the FLG surface, the biocomposite dynamically mitigated reactive oxygen species, demonstrating no cytotoxicity to periodontal ligament cells up to 200 µg·mL-1 while promoting cellular adhesion and maintaining chromatin integrity. Overall, because of its favorable biocompatibility FLG-TA holds promise as a novel biomaterial for dental applications.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.