Daniel Straub, Markus Gross, Mona E Arnold, Julia Zolg, Alexander J C Kuehne
{"title":"On the photoluminescence in triarylmethyl-centered mono-, di-, and multiradicals.","authors":"Daniel Straub, Markus Gross, Mona E Arnold, Julia Zolg, Alexander J C Kuehne","doi":"10.3762/bjoc.21.80","DOIUrl":null,"url":null,"abstract":"<p><p>Organic radicals with light-emitting properties and exceptional stability offer exciting opportunities to address spin-statistical limitations in organic electronics and advance quantum technologies. These radicals, acting as small molecular magnets, exhibit sensitivity to minute magnetic fields and can be tailored with diverse spin centers, making them ideal for spin-optical interfaces, representing key components in quantum communication systems. Furthermore, their ability to form organized, higher-dimensional assemblies presents a promising avenue for overcoming scalability challenges in quantum technologies. Despite their potential, achieving high luminescence quantum yields has largely been limited to donor-functionalized monoradicals, and a detailed understanding of the luminescent behavior of open-shell organic molecules remains elusive. This review delves into the photoluminescent properties and spin ground states of trityl-based mono-, di-, and multiradicals, examining the strategies employed to enhance their performance. Additionally, we review predictive methods for determining the luminescence and spin states of radicals, highlighting critical unresolved questions that must be addressed to unlock the full potential of trityl-based radicals in advanced technological applications.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"964-998"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.80","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Organic radicals with light-emitting properties and exceptional stability offer exciting opportunities to address spin-statistical limitations in organic electronics and advance quantum technologies. These radicals, acting as small molecular magnets, exhibit sensitivity to minute magnetic fields and can be tailored with diverse spin centers, making them ideal for spin-optical interfaces, representing key components in quantum communication systems. Furthermore, their ability to form organized, higher-dimensional assemblies presents a promising avenue for overcoming scalability challenges in quantum technologies. Despite their potential, achieving high luminescence quantum yields has largely been limited to donor-functionalized monoradicals, and a detailed understanding of the luminescent behavior of open-shell organic molecules remains elusive. This review delves into the photoluminescent properties and spin ground states of trityl-based mono-, di-, and multiradicals, examining the strategies employed to enhance their performance. Additionally, we review predictive methods for determining the luminescence and spin states of radicals, highlighting critical unresolved questions that must be addressed to unlock the full potential of trityl-based radicals in advanced technological applications.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.