Single-Atom Mediated d-Band Engineering of Platinum Nanocatalysts for High-Efficiency Acidic Hydrogen Evolution.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-05-28 DOI:10.1002/cssc.202500640
Mi Luo, Bingbao Mei, Linyao Huang, Haiyong Wang, Chenguang Wang
{"title":"Single-Atom Mediated d-Band Engineering of Platinum Nanocatalysts for High-Efficiency Acidic Hydrogen Evolution.","authors":"Mi Luo, Bingbao Mei, Linyao Huang, Haiyong Wang, Chenguang Wang","doi":"10.1002/cssc.202500640","DOIUrl":null,"url":null,"abstract":"<p><p>The rational construction of single-atom-mediated Pt catalysts with optimized electronic structures and robust stability remains a grand challenge for hydrogen evolution reaction (HER). Herein, we pioneer a spatial confinement coupled with a d-band engineering strategy to fabricate cobalt single-atom coordinated Pt nanocatalysts (Pt@Co-SAs/NC), achieving exceptional HER activity with ultralow Pt loading (0.94 wt%). The Pt@Co-SAs/NC exhibits an overpotential of 15 mV at 10 mA/cm2 (ƞ10) and 21.8-fold enhanced mass activity at 20 mV versus commercial Pt/C, surpassing most reported Pt-based systems. Synchrotron X-ray absorption spectroscopy (XAS) and theoretical studies reveal that the atomically dispersed CoN4 sites adjacent to Pt NPs serve as electronic modulators, inducing a 0.36 eV downshift of the Pt d-band center through interfacial charge redistribution. This electronic engineering weakens hydrogen adsorption strength (ΔGH* =-0.17 eV) while accelerating H2 desorption kinetics. Furthermore, the CoN4-anchored carbon matrix suppresses nanoparticle aggregation and ensures exceptional durability through strong metal-support interactions, maintaining 94.2% activity after 130 h operation. This work establishes an atomic-level electronic modulation paradigm for designing highly efficient, cost-effective, and durable electrocatalysts.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500640"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500640","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational construction of single-atom-mediated Pt catalysts with optimized electronic structures and robust stability remains a grand challenge for hydrogen evolution reaction (HER). Herein, we pioneer a spatial confinement coupled with a d-band engineering strategy to fabricate cobalt single-atom coordinated Pt nanocatalysts (Pt@Co-SAs/NC), achieving exceptional HER activity with ultralow Pt loading (0.94 wt%). The Pt@Co-SAs/NC exhibits an overpotential of 15 mV at 10 mA/cm2 (ƞ10) and 21.8-fold enhanced mass activity at 20 mV versus commercial Pt/C, surpassing most reported Pt-based systems. Synchrotron X-ray absorption spectroscopy (XAS) and theoretical studies reveal that the atomically dispersed CoN4 sites adjacent to Pt NPs serve as electronic modulators, inducing a 0.36 eV downshift of the Pt d-band center through interfacial charge redistribution. This electronic engineering weakens hydrogen adsorption strength (ΔGH* =-0.17 eV) while accelerating H2 desorption kinetics. Furthermore, the CoN4-anchored carbon matrix suppresses nanoparticle aggregation and ensures exceptional durability through strong metal-support interactions, maintaining 94.2% activity after 130 h operation. This work establishes an atomic-level electronic modulation paradigm for designing highly efficient, cost-effective, and durable electrocatalysts.

高效酸性析氢铂纳米催化剂的单原子介导d波段工程。
合理构建具有优化电子结构和稳定稳定性的单原子介导Pt催化剂是析氢反应(HER)的一大挑战。在此,我们开创了空间限制与d波段工程策略相结合的方法来制造钴单原子配位Pt纳米催化剂(Pt@Co-SAs/NC),在超低Pt负载(0.94 wt%)下实现了卓越的HER活性。Pt@Co-SAs/NC在10 mA/cm2时的过电位为15 mV (ƞ10),与商用Pt/C相比,在20 mV时的质量活性增强了21.8倍,超过了大多数基于Pt的系统。同步加速器x射线吸收光谱(XAS)和理论研究表明,与Pt np相邻的原子分散的CoN4位点起到电子调制器的作用,通过界面电荷重分布诱导Pt d带中心下降0.36 eV。这一电子工程削弱了氢的吸附强度(ΔGH* =-0.17 eV),同时加速了氢的解吸动力学。此外,con4锚定的碳基体抑制纳米颗粒聚集,并通过强金属支撑相互作用确保卓越的耐久性,在运行130小时后保持94.2%的活性。这项工作为设计高效、经济、耐用的电催化剂建立了原子级电子调制范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信