A De Novo Designed Metalloprotein Displays Variable Thermal Stability and Binding Stoichiometry with Transition Metal Ions

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
ChemBioChem Pub Date : 2025-05-28 DOI:10.1002/cbic.202500322
Britt Rooijakkers, Gaya Verhagen, Anneloes Cramer-Blok, Ed Zuidinga, Aimee L. Boyle
{"title":"A De Novo Designed Metalloprotein Displays Variable Thermal Stability and Binding Stoichiometry with Transition Metal Ions","authors":"Britt Rooijakkers,&nbsp;Gaya Verhagen,&nbsp;Anneloes Cramer-Blok,&nbsp;Ed Zuidinga,&nbsp;Aimee L. Boyle","doi":"10.1002/cbic.202500322","DOIUrl":null,"url":null,"abstract":"<p>Metal-binding selectivity in natural proteins is determined by multiple factors such as the protein's structure, metal concentration within cellular compartments, and the presence of metallochaperones. The in vitro selectivity of proteins for transition metal ions is largely governed by the Irving–Williams series, which states protein-metal complex stability follows the order Co(II) &lt; Ni(II) &lt; Cu(II) &gt; Zn(II). A de novo protein has been designed that folds in the presence of certain transition metal ions into a monomeric α-helical bundle, with the least stable protein-metal complex being formed with Cu(II). Moreover, when increasing the metal concentration of Cu(II) or Zn(II), more metal ions are incorporated into the protein accompanied by a concurrent decrease in the amount of secondary structure. One reason may be that there is a balance between stability conferred by the coordination of the metal ion(s) and stability conferred by hydrophobic packing of the α-helical bundle. Metals may therefore adopt distorted coordination geometries, or binding of multiple ions may cause distortion of the protein backbone, leading to compromised folding of the protein scaffold, or variable thermal stabilities of the metalloprotein complexes. This protein scaffold therefore contributes to the deciphering of design rules for metal selectivity in proteins.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 14","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbic.202500322","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202500322","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-binding selectivity in natural proteins is determined by multiple factors such as the protein's structure, metal concentration within cellular compartments, and the presence of metallochaperones. The in vitro selectivity of proteins for transition metal ions is largely governed by the Irving–Williams series, which states protein-metal complex stability follows the order Co(II) < Ni(II) < Cu(II) > Zn(II). A de novo protein has been designed that folds in the presence of certain transition metal ions into a monomeric α-helical bundle, with the least stable protein-metal complex being formed with Cu(II). Moreover, when increasing the metal concentration of Cu(II) or Zn(II), more metal ions are incorporated into the protein accompanied by a concurrent decrease in the amount of secondary structure. One reason may be that there is a balance between stability conferred by the coordination of the metal ion(s) and stability conferred by hydrophobic packing of the α-helical bundle. Metals may therefore adopt distorted coordination geometries, or binding of multiple ions may cause distortion of the protein backbone, leading to compromised folding of the protein scaffold, or variable thermal stabilities of the metalloprotein complexes. This protein scaffold therefore contributes to the deciphering of design rules for metal selectivity in proteins.

Abstract Image

一种全新设计的金属蛋白具有可变的热稳定性和与过渡金属离子的结合化学计量学。
天然蛋白质中的金属结合选择性是由多种因素决定的,如蛋白质的结构、细胞内金属浓度和金属伴侣的存在。蛋白质对过渡金属离子的体外选择性在很大程度上取决于Irving-Williams系列,即蛋白质-金属配合物的稳定性遵循Co(II) < Ni(II) < Cu(II) > Zn(II)的顺序。我们设计了一种新的蛋白质,它在某些过渡金属离子存在下折叠成单体α-螺旋束,其中最不稳定的蛋白质-金属复合物是与Cu(II)形成的。此外,当Cu(II)或Zn(II)的金属浓度增加时,更多的金属离子被纳入蛋白质,同时二级结构的数量减少。我们提出的一个原因可能是在金属离子配位所赋予的稳定性和α-螺旋束疏水填料所赋予的稳定性之间存在平衡。因此,金属可能采用扭曲的配位几何形状,或者多个离子的结合可能导致蛋白质骨架的扭曲,导致蛋白质支架的折叠受损,或者金属蛋白复合物的热稳定性变化。因此,这种蛋白质支架有助于破译蛋白质中金属选择性的设计规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信