Multi-Level Coupled-Cluster Description of Crystal Lattice Energies.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Krystyna Syty, Grzegorz Czekało, Khanh Ngoc Pham, Marcin Modrzejewski
{"title":"Multi-Level Coupled-Cluster Description of Crystal Lattice Energies.","authors":"Krystyna Syty, Grzegorz Czekało, Khanh Ngoc Pham, Marcin Modrzejewski","doi":"10.1021/acs.jctc.5c00428","DOIUrl":null,"url":null,"abstract":"<p><p>The many-body expansion (MBE) of the lattice energy enables an ab initio description of molecular solids using correlated wave function approximations. However, the practical application of MBE requires computing the large number of <i>n</i>-body contributions efficiently. To this end, we employ a multi-level coupled-cluster approach which adapts the approximation level based on interaction type and intermolecular distance. The high-level method, including connected triple excitations, is applied only to monomer relaxation and dimer interactions roughly within the first and second coordination shells. Long-range dimers and trimers are treated using a simplified coupled-cluster description based on the random-phase approximation (RPA). A key feature is an energy correction which mitigates the underbinding error of the base RPA. Convergence to the bulk limit is accelerated by the addition of the periodic Hartree-Fock correction. The proposed approach is validated against recent diffusion Monte Carlo reference data for the X23 data set, achieving a mean absolute error of 3.1 kJ/mol, i.e., chemical accuracy for absolute lattice energies.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00428","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The many-body expansion (MBE) of the lattice energy enables an ab initio description of molecular solids using correlated wave function approximations. However, the practical application of MBE requires computing the large number of n-body contributions efficiently. To this end, we employ a multi-level coupled-cluster approach which adapts the approximation level based on interaction type and intermolecular distance. The high-level method, including connected triple excitations, is applied only to monomer relaxation and dimer interactions roughly within the first and second coordination shells. Long-range dimers and trimers are treated using a simplified coupled-cluster description based on the random-phase approximation (RPA). A key feature is an energy correction which mitigates the underbinding error of the base RPA. Convergence to the bulk limit is accelerated by the addition of the periodic Hartree-Fock correction. The proposed approach is validated against recent diffusion Monte Carlo reference data for the X23 data set, achieving a mean absolute error of 3.1 kJ/mol, i.e., chemical accuracy for absolute lattice energies.

晶体点阵能量的多级耦合簇描述。
晶格能量的多体展开(MBE)使得用相关波函数近似从头描述分子固体成为可能。然而,MBE的实际应用需要高效地计算大量的n体贡献。为此,我们采用了一种基于相互作用类型和分子间距离的多级耦合簇方法来适应近似水平。高层次的方法,包括连接三重激发,只适用于单体弛豫和二聚体相互作用大致在第一和第二配位壳。远程二聚体和三聚体使用基于随机相位近似(RPA)的简化耦合簇描述来处理。一个关键特征是能量校正,它减轻了基础RPA的下结合误差。通过添加周期性Hartree-Fock校正,加速了收敛到体积极限。利用X23数据集的最新扩散蒙特卡罗参考数据验证了所提出的方法,平均绝对误差为3.1 kJ/mol,即绝对晶格能的化学精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信