A Quantum Computational Method for Corrosion Inhibition.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Journal of Chemical Theory and Computation Pub Date : 2025-06-10 Epub Date: 2025-05-28 DOI:10.1021/acs.jctc.5c00469
Naman Jain, Rosa Di Felice
{"title":"A Quantum Computational Method for Corrosion Inhibition.","authors":"Naman Jain, Rosa Di Felice","doi":"10.1021/acs.jctc.5c00469","DOIUrl":null,"url":null,"abstract":"<p><p>We present a hybrid classical-quantum computational pipeline for the determination of adsorption energies of a benzotriazole molecule on an aluminum alloy surface relevant for the transport industry, in particular to address the corrosion problem. The molecular adsorbate and substrate alloy were selected by interrogating molecular and materials databases, in search for desired criteria. The protocol can be generalized to other surfaces with arbitrary orientation and chemical composition, as well as to other molecular adsorbates. It includes three main steps based on mean-field electronic structure calculations, embedding theories and quantum algorithms. The quantum computing step demonstrated here with the variational quantum eigensolver is amenable to any other reliable quantum algorithm for ground-state energy estimation. Excited-state energies can also be taken into account in the quantum computing step, if the target reaction involves excited states.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"5697-5711"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12160000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present a hybrid classical-quantum computational pipeline for the determination of adsorption energies of a benzotriazole molecule on an aluminum alloy surface relevant for the transport industry, in particular to address the corrosion problem. The molecular adsorbate and substrate alloy were selected by interrogating molecular and materials databases, in search for desired criteria. The protocol can be generalized to other surfaces with arbitrary orientation and chemical composition, as well as to other molecular adsorbates. It includes three main steps based on mean-field electronic structure calculations, embedding theories and quantum algorithms. The quantum computing step demonstrated here with the variational quantum eigensolver is amenable to any other reliable quantum algorithm for ground-state energy estimation. Excited-state energies can also be taken into account in the quantum computing step, if the target reaction involves excited states.

一种缓蚀的量子计算方法。
我们提出了一种混合经典-量子计算管道,用于确定与运输行业相关的铝合金表面上苯并三唑分子的吸附能,特别是解决腐蚀问题。通过查询分子和材料数据库,寻找所需的标准,选择分子吸附物和衬底合金。该方法可推广到具有任意取向和化学组成的其他表面,以及其他分子吸附物。它包括基于平均场电子结构计算、嵌入理论和量子算法的三个主要步骤。这里用变分量子特征解算器演示的量子计算步骤适用于任何其他可靠的基态能量估计量子算法。如果目标反应涉及激发态,则在量子计算步骤中也可以考虑激发态能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信