Nahuel N. Foressi , Leandro Cruz Rodríguez , Natalia Wilke , M. Soledad Celej
{"title":"Cation-Driven Modulation of Tau Condensates: Insights into Liquid–Liquid Phase Separation and Rheological Properties","authors":"Nahuel N. Foressi , Leandro Cruz Rodríguez , Natalia Wilke , M. Soledad Celej","doi":"10.1021/acs.biomac.5c00193","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of biocondensates through liquid–liquid phase separation (LLPS) has emerged as a vital and ubiquitous phenomenon contributing to the spatiotemporal coordination of cellular processes. Additionally, dysregulation of LLPS is increasingly implicated as a previously overlooked driver of diseases. LLPS typically involves multivalent noncovalent interactions among biomolecules, yet the role of solvent molecules, particularly water, in this process has received increasing attention. Metal ions are essential for life and exist in varying concentrations within cells. Both the concentration and type of metal ions significantly influence the phase separation of biomolecules. Ions with different degrees of hydration can uniquely alter the structure of water, which, in turn, affects LLPS. In this study, we use hyperspectral imaging (HSI) analysis and optical tweezers to investigate the effects of cations with different degrees of hydration on solvent properties within Tau condensates, an intrinsically disordered protein involved in Alzheimer’s disease. We first demonstrate that the environment within Tau droplets is more structured than the diluted phase. Then, we show that highly hydrated cations enhance phase separation, increase the proportion of restricted water within Tau droplets, and slow down their relaxation dynamics, suggesting a correlation between water structuring and rheological properties. By connecting solvent properties with the stability and dynamics of phase-separated droplets, this research provides insights into the molecular mechanisms governing LLPS and how environmental factors, such as metal ions and water structure, influence this process.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (53KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3605-3616"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002624","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of biocondensates through liquid–liquid phase separation (LLPS) has emerged as a vital and ubiquitous phenomenon contributing to the spatiotemporal coordination of cellular processes. Additionally, dysregulation of LLPS is increasingly implicated as a previously overlooked driver of diseases. LLPS typically involves multivalent noncovalent interactions among biomolecules, yet the role of solvent molecules, particularly water, in this process has received increasing attention. Metal ions are essential for life and exist in varying concentrations within cells. Both the concentration and type of metal ions significantly influence the phase separation of biomolecules. Ions with different degrees of hydration can uniquely alter the structure of water, which, in turn, affects LLPS. In this study, we use hyperspectral imaging (HSI) analysis and optical tweezers to investigate the effects of cations with different degrees of hydration on solvent properties within Tau condensates, an intrinsically disordered protein involved in Alzheimer’s disease. We first demonstrate that the environment within Tau droplets is more structured than the diluted phase. Then, we show that highly hydrated cations enhance phase separation, increase the proportion of restricted water within Tau droplets, and slow down their relaxation dynamics, suggesting a correlation between water structuring and rheological properties. By connecting solvent properties with the stability and dynamics of phase-separated droplets, this research provides insights into the molecular mechanisms governing LLPS and how environmental factors, such as metal ions and water structure, influence this process.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.