One-dimensional Carrollian fluids III: Global existence and weak continuity in L ∞ $L^\infty$

IF 1 2区 数学 Q1 MATHEMATICS
Marios Petropoulos, Simon Schulz, Grigalius Taujanskas
{"title":"One-dimensional Carrollian fluids III: Global existence and weak continuity in \n \n \n L\n ∞\n \n $L^\\infty$","authors":"Marios Petropoulos,&nbsp;Simon Schulz,&nbsp;Grigalius Taujanskas","doi":"10.1112/jlms.70186","DOIUrl":null,"url":null,"abstract":"<p>The Carrollian fluid equations arise as the <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$c \\rightarrow 0$</annotation>\n </semantics></math> limit of the relativistic fluid equations and have recently experienced a surge of activity in the flat-space holography community. However, the rigorous mathematical well-posedness theory for these equations does not appear to have been previously studied. This paper is the third in a series in which we initiate the systematic analysis of the Carrollian fluid equations. In the present work, we prove the global-in-time existence of bounded entropy solutions to the isentropic Carrollian fluid equations in one spatial dimension for a particular constitutive law (<span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\gamma = 3$</annotation>\n </semantics></math>). Our method is to use a vanishing viscosity approximation for which we establish a compensated compactness framework. Using this framework we also prove the compactness of entropy solutions in <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math>, and establish a kinetic formulation of the problem. This global existence result in <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> extends the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>1</mn>\n </msup>\n <annotation>$C^1$</annotation>\n </semantics></math> theory presented in [2].</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 6","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70186","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Carrollian fluid equations arise as the c 0 $c \rightarrow 0$ limit of the relativistic fluid equations and have recently experienced a surge of activity in the flat-space holography community. However, the rigorous mathematical well-posedness theory for these equations does not appear to have been previously studied. This paper is the third in a series in which we initiate the systematic analysis of the Carrollian fluid equations. In the present work, we prove the global-in-time existence of bounded entropy solutions to the isentropic Carrollian fluid equations in one spatial dimension for a particular constitutive law ( γ = 3 $\gamma = 3$ ). Our method is to use a vanishing viscosity approximation for which we establish a compensated compactness framework. Using this framework we also prove the compactness of entropy solutions in L $L^\infty$ , and establish a kinetic formulation of the problem. This global existence result in L $L^\infty$ extends the C 1 $C^1$ theory presented in [2].

一维Carrollian流体III: L∞上的整体存在性和弱连续性 $L^\infty$
卡罗流体方程作为相对论流体方程的c→0 $c \rightarrow 0$极限而出现,并且最近在平面空间全息社区中经历了活动的激增。然而,这些方程的严格的数学适定性理论似乎还没有被研究过。本文是系统分析卡罗流体方程系列文章的第三篇。在本工作中,我们证明了在一个特定的本构律(γ = 3 $\gamma = 3$)下,一维等熵卡罗流体方程的有界熵解的全局时间存在性。我们的方法是使用一个消失的粘度近似,我们建立了一个补偿紧性框架。在此框架下,我们还证明了熵解在L∞上的紧性$L^\infty$,并建立了问题的动力学表达式。这个在L∞上的全局存在性结果$L^\infty$扩展了[2]中提出的c1 $C^1$理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信